ﻻ يوجد ملخص باللغة العربية
Discrete exponential operation, such as modular exponentiation and scalar multiplication on elliptic curves, is a basic operation of many public-key cryptosystems. However, the exponential operations are considered prohibitively expensive for resource-constrained mobile devices. In this paper, we address the problem of secure outsourcing of exponentiation operations to one single untrusted server. Our proposed scheme (ExpSOS) only requires very limited number of modular multiplications at local mobile environment thus it can achieve impressive computational gain. ExpSOS also provides a secure verification scheme with probability approximately 1 to ensure that the mobile end-users can always receive valid results. The comprehensive analysis as well as the simulation results in real mobile device demonstrates that our proposed ExpSOS can significantly improve the existing schemes in efficiency, security and result verifiability. We apply ExpSOS to securely outsource several cryptographic protocols to show that ExpSOS is widely applicable to many cryptographic computations.
With the support of cloud computing, large quantities of data collected from various WSN applications can be managed efficiently. However, maintaining data security and efficiency of data processing in cloud-WSN (C-WSN) are important and challenging
Cloud computing has become an irreversible trend. Together comes the pressing need for verifiability, to assure the client the correctness of computation outsourced to the cloud. Existing verifiable computation techniques all have a high overhead, th
Recently, Wang et al. [IEEE INFOCOM 2011, 820-828], and Nie et al. [IEEE AINA 2014, 591-596] have proposed two schemes for secure outsourcing of large-scale linear programming (LP). They did not consider the standard form: minimize c^{T}x, subject to
We show that the verifying equations in the scheme [Theoretical Computer Science, 562 (2015), 112-121] cannot filter out some malformed values returned by the malicious servers. We also remark that the two untrusted programs model adopted in the sche
Cloud computing offers resource-constrained users big-volume data storage and energy-consuming complicated computation. However, owing to the lack of full trust in the cloud, the cloud users prefer privacy-preserving outsourced data computation with