ﻻ يوجد ملخص باللغة العربية
Using the standard Coxeter presentation for the symmetric group $S_n$, two reduced expressions for the same group element are said to be commutation equivalent if we can obtain one expression from the other by applying a finite sequence of commutations. The resulting equivalence classes of reduced expressions are called commutation classes. How many commutation classes are there for the longest element in $S_n$?
We prove that the expected number of braid moves in the commutation class of the reduced word $(s_1 s_2 cdots s_{n-1})(s_1 s_2 cdots s_{n-2}) cdots (s_1 s_2)(s_1)$ for the long element in the symmetric group $mathfrak{S}_n$ is one. This is a variant
The hypercontractive inequality is a fundamental result in analysis, with many applications throughout discrete mathematics, theoretical computer science, combinatorics and more. So far, variants of this inequality have been proved mainly for product
There are $n$ bags with coins that look the same. Each bag has an infinite number of coins and all coins in the same bag weigh the same amount. Coins in different bags weigh 1, 2, 3, and so on to $n$ grams exactly. There is a unique label from the se
Estimating the unknown number of classes in a population has numerous important applications. In a Poisson mixture model, the problem is reduced to estimating the odds that a class is undetected in a sample. The discontinuity of the odds prevents the
In this paper, we prove that if a finite number of rectangles, every of which has at least one integer side, perfectly tile a big rectangle then there exists a strategy which reduces the number of these tiles (rectangles) without violating the condit