ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraints on modified gravity from Planck 2015: when the health of your theory makes the difference

108   0   0.0 ( 0 )
 نشر من قبل Valentina Maria Salvatelli
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use the effective field theory of dark energy (EFT of DE) formalism to constrain dark energy models belonging to the Horndeski class with the recent Planck 2015 CMB data. The space of theories is spanned by a certain number of parameters determining the linear cosmological perturbations, while the expansion history is set to that of a standard $Lambda$CDM model. We always demand that the theories be free of fatal instabilities. Additionally, we consider two optional conditions, namely that scalar and tensor perturbations propagate with subliminal speed. Such criteria severely restrict the allowed parameter space and are thus very effective in shaping the posteriors. As a result, we confirm that no theory performs better than $Lambda$CDM when CMB data alone are analysed. Indeed, the healthy dark energy models considered here are not able to reproduce those phenomenological behaviours of the effective Newton constant and gravitational slip parameters that, according to previous studies, best fit the data.

قيم البحث

اقرأ أيضاً

A modification of the action of the general relativity produces a different pattern for the growth of the cosmic structures below a certain length-scale leaving an imprint on the cosmic microwave background (CMB) anisotropies. We re-examine the upper limits on the length-scale parameter B0 of f (R) models using the recent data from the Planck satellite experiment. We also investigate the combined constraints obtained when including the Hubble Space Telescope H0 measurement and the baryon acoustic oscillations measurements from the SDSS, WiggleZ and BOSS surveys.
We study Planck 2015 cosmic microwave background (CMB) anisotropy data using the energy density inhomogeneity power spectrum generated by quantum fluctuations during an early epoch of inflation in the non-flat XCDM model. Here dark energy is paramete rized using a fluid with a negative equation of state parameter but with the speed of fluid acoustic inhomogeneities set to the speed of light. We use this simple parameterization of dynamical dark energy, that is relatively straightforward to use in a computation, in a first attempt to gain some insight into how dark energy dynamics and non-zero spatial curvature jointly affect the CMB anisotropy data constraints. Unlike earlier analyses of non-flat models, we use a physically consistent power spectrum for energy density inhomogeneities. We find that the Planck 2015 data in conjunction with baryon acoustic oscillation measurements are reasonably well fit by a closed XCDM model in which spatial curvature contributes a percent of the current cosmological energy density budget. In this model, the measured Hubble constant and non-relativistic matter density parameter are in good agreement with values determined using most other data. Depending on parameter values, the closed XCDM model has reduced power, relative to the tilted, spatially-flat $Lambda$CDM case, and appears to partially alleviate the low multipole CMB temperature anisotropy deficit and can help partially reconcile the CMB anisotropy and weak lensing $sigma_8$ constraints, at the expense of somewhat worsening the fit to higher multipole CMB temperature anisotropy data. However, the closed XCDM inflation model does not seem to improve the agreement much, if at all, compared to the closed $Lambda$CDM inflation case, even though it has one more free parameter. Our results are interesting but tentative; a more thorough analysis is needed to properly gauge their significance.
We perform Markov chain Monte Carlo analyses to put constraints on the non-flat $phi$CDM inflation model using Planck 2015 cosmic microwave background (CMB) anisotropy data and baryon acoustic oscillation distance measurements. The $phi$CDM model is a consistent dynamical dark energy model in which the currently accelerating cosmological expansion is powered by a scalar field $phi$ slowly rolling down an inverse power-law potential energy density. We also use a physically consistent power spectrum for energy density inhomogeneities in this non-flat model. We find that, like the closed-$Lambda$CDM and closed-XCDM models, the closed-$phi$CDM model provides a better fit to the lower multipole region of the CMB temperature anisotropy data compared to that provided by the tilted flat-$Lambda$CDM model. Also, like the other closed models, this model reduces the tension between the Planck and the weak lensing $sigma_8$ constraints. However, the higher multipole region of the CMB temperature anisotropy data are better fit by the tilted flat-$Lambda$CDM model than by the closed models.
We study Planck 2015 cosmic microwave background (CMB) anisotropy data using the energy density inhomogeneity power spectrum generated by quantum fluctuations during an early epoch of inflation in the non-flat $Lambda$CDM model. Unlike earlier analys es of non-flat models, which assumed an inconsistent power-law power spectrum of energy density inhomogeneities, we find that the Planck 2015 data alone, and also in conjunction with baryon acoustic oscillation measurements, are reasonably well fit by a closed $Lambda$CDM model in which spatial curvature contributes a few percent of the current cosmological energy density budget. In this model, the measured Hubble constant and non-relativistic matter density parameter are in good agreement with values determined using most other data. Depending on parameter values, the closed $Lambda$CDM model has reduced power, relative to the tilted, spatially-flat $Lambda$CDM case, and can partially alleviate the low multipole CMB temperature anisotropy deficit and can help partially reconcile the CMB anisotropy and weak lensing $sigma_8$ constraints, at the expense of somewhat worsening the fit to higher multipole CMB temperature anisotropy data. Our results are interesting but tentative; a more thorough analysis is needed to properly gauge their significance.
We determine constraints on spatially-flat tilted dynamical dark energy XCDM and $phi$CDM inflation models by analyzing Planck 2015 cosmic microwave background (CMB) anisotropy data and baryon acoustic oscillation (BAO) distance measurements. XCDM is a simple and widely used but physically inconsistent parameterization of dynamical dark energy, while the $phi$CDM model is a physically consistent one in which a scalar field $phi$ with an inverse power-law potential energy density powers the currently accelerating cosmological expansion. Both these models have one additional parameter compared to standard $Lambda$CDM and both better fit the TT + lowP + lensing + BAO data than does the standard tilted flat-$Lambda$CDM model, with $Delta chi^2 = -1.26 (-1.60)$ for the XCDM ($phi$CDM) model relative to the $Lambda$CDM model. While this is a 1.1$sigma$ (1.3$sigma$) improvement over standard $Lambda$CDM and so not significant, dynamical dark energy models cannot be ruled out. In addition, both dynamical dark energy models reduce the tension between the Planck 2015 CMB anisotropy and the weak lensing $sigma_8$ constraints.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا