ترغب بنشر مسار تعليمي؟ اضغط هنا

Anomalous thermal decoherence in a quantum magnet measured with neutron spin-echo spectroscopy

85   0   0.0 ( 0 )
 نشر من قبل Felix Groitl
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The effect of temperature dependent asymmetric line broadening is investigated in Cu(NO$_3$)$_2cdot$2.5D$_2$O, a model material for a 1-D bond alternating Heisenberg chain, using the high resolution neutron-resonance spin-echo (NRSE) technique. Inelastic neutron scattering experiments on dispersive excitations including phase sensitive measurements demonstrate the potential of NRSE to resolve line shapes, which are non-Lorentzian, opening up a new and hitherto unexplored class of experiments for the NRSE method beyond standard line width measurements. The particular advantage of NRSE is its direct access to the correlations in the time domain without convolution with the resolution function of the background spectrometer. This novel application of NRSE is very promising and establishes a basis for further experiments on different systems, since the results for Cu(NO$_3$)$_2cdot$2.5D$_2$O are applicable to a broad range of quantum systems.



قيم البحث

اقرأ أيضاً

The generation of high frequency oscillatory magnetic fields represents a fundamental component underlying the successful implementation of neutron resonant spin-echo spectrometers, a class of instrumentation critical for the high-resolution extracti on of dynamical excitations (structural and magnetic) in materials. In this paper, the setup of the resonant circuits at the longitudinal resonant spin-echo spectrometer RESEDA is described in comprehensive technical detail. We demonstrate that these circuits are capable of functioning at frequencies up to 3.6 MHz and over a broad bandwidth down to 35 kHz using a combination of signal generators, amplifiers, impedance matching transformers, and a carefully designed cascade of tunable capacitors and customized coils.
Recent progress in neutron spin-echo spectroscopy by means of longitudinal Modulation of IntEnsity with Zero Effort (MIEZE) is reviewed. Key technical characteristics are summarized which highlight that the parameter range accessible in momentum and energy, as well as its limitations, are extremely well understood and controlled. Typical experimental data comprising quasi-elastic and inelastic scattering are presented, featuring magneto-elastic coupling and crystal field excitations in Ho2Ti2O7, the skyrmion lattice to paramagnetic transition under applied magnetic field in MnSi, ferromagnetic criticality and spin waves in Fe. In addition bench marking studies of the molecular dynamics in H2O are reported. Taken together, the advantages of MIEZE spectroscopy in studies at small and intermediate momentum transfers comprise an exceptionally wide dynamic range of over seven orders of magnitude, the capability to perform straight forward studies on depolarizing samples or under depolarizing sample environments, as well as on incoherently scattering materials.
We present here a study of the magnetic properties of the antiferromagnetic dimer material CuVOF$_4$(H$_2$O)$_6cdot$H$_2$O, in which the dimer unit is composed of two different $S = 1/2$ species, Cu(II) and V(IV). An applied magnetic field of $mu_0H_ {rm c1} = 13.1(1)~rm T$ is found to close the singlet-triplet energy gap, the magnitude of which is governed by the antiferromagnetic intradimer, $J_0 approx 21~rm K$, and interdimer, $J approx 1~rm K$, exchange energies, determined from magnetometry and electron-spin resonance measurements. The results of density functional theory (DFT) calculations are consistent with the experimental results and predicts antiferromagnetic coupling along all nearest-neighbor bonds, with the magnetic ground state comprising spins of different species aligning antiparallel to one another, while spins of the same species are aligned parallel. The magnetism in this system cannot be accurately described by the overlap between localized V orbitals and magnetic Cu orbitals lying in the Jahn-Teller (JT) plane, with a tight-binding model based on such a set of orbitals incorrectly predicting that interdimer exchange should be dominant. DFT calculations indicate significant spin density on the bridging oxide, suggesting instead an unusual mechanism in which intradimer exchange is mediated through the O atom on the Cu(II) JT axis.
We investigated the dispersion of nuclear spin waves in Nd$_2$CuO$_4$ by using neutron spin-echo spectroscopy at millikelvin temperatures. Our results show unambiguously the existence of dispersion of nuclear spin waves in Nd$_2$CuO$_4$ at T = 30 mK. A fit of the dispersion data with the spin wave dispersion formula gave the Suhl-Nakamura interaction range to be of the order of 10 {AA}.
A family of spin-orbit coupled honeycomb Mott insulators offers a playground to search for quantum spin liquids (QSLs) via bond-dependent interactions. In candidate materials, a symmetric off-diagonal $Gamma$ term, close cousin of Kitaev interaction, has emerged as another source of frustration that is essential for complete understanding of these systems. However, the ground state of honeycomb $Gamma$ model remains elusive, with a suggested zigzag magnetic order. Here we attempt to resolve the puzzle by perturbing the $Gamma$ region with a staggered Heisenberg interaction which favours the zigzag ordering. Despite such favour, we find a wide disordered region inclusive of the $Gamma$ limit in the phase diagram. Further, this phase exhibits a vanishing energy gap, a collapse of excitation spectrum, and a logarithmic entanglement entropy scaling on long cylinders, indicating a gapless QSL. Other quantities such as plaquette-plaquette correlation are also discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا