ﻻ يوجد ملخص باللغة العربية
We report on magneto-transport measurements on low-density, large-area monolayer epitaxial graphene devices grown on SiC. We show that the zero-energy Landau level (LL) in monolayer graphene, which is predicted to be magnetic field ($B$)-independent, can float up above the Fermi energy at low $B$. This is supported by the temperature ($T$)-driven flow diagram approximated by the semi-circle law as well as the $T$-independent point in the Hall conductivity $sigma_{xy}$ near $e^2/h$. Our experimental data are in sharp contrast to conventional understanding of the zeroth LL and metallic-like behavior in pristine graphene prepared by mechanical exfoliation at low $T$. This surprising result can be ascribed to substrate-induced sublattice symmetry breaking which splits the degeneracy of the zeroth Landau level. Our finding provides a unified picture regarding the metallic behavior in pristine graphene prepared by mechanical exfoliation, and the insulating behavior and the insulator-quantum Hall transition in monolayer epitaxial graphene.
Non-diagonal (bond) disorder in graphene broadens Landau levels (LLs) in the same way as random potential. The exception is the zeroth LL, $n=0$, which is robust to the bond disorder, since it does not mix different $n=0$ states within a given valley
The quantum Hall effect near the charge neutrality point in bilayer graphene is investigated in high magnetic fields of up to 35 T using electronic transport measurements. In the high field regime, the eight-fold degeneracy in the zero energy Landau
Transport measurements on an etched graphene nanoribbon are presented. It is shown that two distinct voltage scales can be experimentally extracted that characterize the parameter region of suppressed conductance at low charge density in the ribbon.
The wavefunction of massless Dirac fermions is a two-component spinor. In graphene, a one-atom-thick film showing two-dimensional Dirac-like electronic excitations, the two-component representation reflects the amplitude of the electron wavefunction
We demonstrate that surface relaxation, which is insignificant in trilayer graphene, starts to manifest in Bernal-stacked tetralayer graphene. Bernal-stacked few-layer graphene has been investigated by analyzing its Landau level spectra through quant