ﻻ يوجد ملخص باللغة العربية
In this paper, we investigate and prove the nonlinear stability of viscous shock wave solutions of a scalar viscous conservation law, using the methods developed for general systems of conservation laws by Howard, Mascia, Zumbrun and others, based on instantaneous tracking of the location of the perturbed viscous shock wave. In some sense, this paper extends the treatment in a previous expository work of Zumbrun [Instantaneous shock location ...] on Burgers equation to the general case, giving an exposition of these methods in the simplest setting of scalar equations. In particular we give by a rescaling argument a simple treatment of nonlinear stability in the small-amplitude case.
In several space dimensions, scalar shock waves between two constant states u $pm$ are not necessarily planar. We describe them in detail. Then we prove their asymptotic stability, assuming that they are uniformly non-characteristic. Our result is co
We carry out the first rigorous numerical proof based on Evans function computations of stability of viscous shock profiles, for the system of isentropic gas dynamics with monatomic equation of state. We treat a selection of shock strengths ranging f
Shock wave theory was first studied for gas dynamics, for which shocks appear as compression waves. A shock wave is characterized as a sharp transition, even discontinuity in the flow. In fact, shocks appear in many different physical situation and r
In this paper, the large time behavior of solutions of 1-D isentropic Navier-Stokes system is investigated. It is shown that a composite wave consisting of two viscous shock waves is stable for the Cauchy problem provided that the two waves are initi
The large time behavior of the solutions to a multi-dimensional viscous conservation law is considered in this paper. It is shown that the solution time-asymptotically tends to the planar rarefaction wave if the initial perturbations are multi-dimens