ﻻ يوجد ملخص باللغة العربية
Single crystals of the Kitaev spin-liquid candidate $alpha$-RuCl$_3$ have been studied to determine low-temperature bulk properties, structure and the magnetic ground state. Refinements of x-ray diffraction data show that the low temperature crystal structure is described by space group $C2/m$ with a nearly-perfect honeycomb lattice exhibiting less than 0.2 % in-plane distortion. The as-grown single crystals exhibit only one sharp magnetic transition at $T_{N}$ = 7~K. The magnetic order below this temperature exhibits a propagation vector of $k$ = (0, 1, 1/3), which coincides with a 3-layer stacking of the $C2/m$ unit cells. Magnetic transitions at higher temperatures up to 14~K can be introduced by deformations of the crystal that result in regions in the crystal with a 2-layer stacking sequence. The best fit symmetry allowed magnetic structure of the as-grown crystals shows that the spins lie in the $ac$-plane, with a zigzag configuration in each honeycomb layer. The three layer repeat out-of-plane structure can be refined as a 120$^o$ spiral order or a collinear structure with spin direction 35$^o$ away from the $a$-axis. The collinear spin configuration yields a slightly better fit and also is physically preferred. The average ordered moment in either structure is less than 0.45(5) $mu_B$ per Ru$^{3+}$ ion.
Kitaev-type interactions between neighbouring magnetic moments emerge in the honeycomb material ${alpha}$-RuCl3. It is debated however whether these Kitaev interactions are ferromagnetic or antiferromagnetic. With electron energy loss spectroscopy (E
Revealing the spin excitations of complex quantum magnets is key to developing a minimal model that explains the underlying magnetic correlations in the ground state. We investigate the low-energy magnons in $alpha$-RuCl$_3$ by combining time-domain
Polarization-resolved Raman spectroscopy was performed and analyzed from large, high quality, mono-domain single crystal of {alpha}-RuCl3, a proximate Kitaev quantum spin liquid. Spectra were collected with laser polarizations parallel and perpendicu
Fractionalized excitations are of considerable interest in recent condensed-matter physics. Fractionalization of the spin degrees of freedom into localized and itinerant Majorana fermions are predicted for the Kitaev spin liquid, an exactly solvable
Motivated by the possibility of an intermediate U(1) quantum spin liquid phase in out-of-plane magnetic fields and enhanced magnetic fluctuations in exfoliated {alpha}-RuCl3 flakes, we study magneto-Raman spectra of exfoliated multilayer {alpha}-RuCl