ترغب بنشر مسار تعليمي؟ اضغط هنا

Modeling Precursors for Event Forecasting via Nested Multi-Instance Learning

70   0   0.0 ( 0 )
 نشر من قبل Yue Ning
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Forecasting events like civil unrest movements, disease outbreaks, financial market movements and government elections from open source indicators such as news feeds and social media streams is an important and challenging problem. From the perspective of human analysts and policy makers, forecasting algorithms need to provide supporting evidence and identify the causes related to the event of interest. We develop a novel multiple instance learning based approach that jointly tackles the problem of identifying evidence-based precursors and forecasts events into the future. Specifically, given a collection of streaming news articles from multiple sources we develop a nested multiple instance learning approach to forecast significant societal events across three countries in Latin America. Our algorithm is able to identify news articles considered as precursors for a protest. Our empirical evaluation shows the strengths of our proposed approaches in filtering candidate precursors, forecasting the occurrence of events with a lead time and predicting the characteristics of different events in comparison to several other formulations. We demonstrate through case studies the effectiveness of our proposed model in filtering the candidate precursors for inspection by a human analyst.



قيم البحث

اقرأ أيضاً

The communication devices have produced digital traces for their users either voluntarily or not. This type of collective data can give powerful indications that are affecting the urban systems design and development. In this study mobile phone data during Armada event is investigated. Analyzing mobile phone traces gives conceptual views about individuals densities and their mobility patterns in the urban city. The geo-visualization and statistical techniques have been used for understanding human mobility collectively and individually. The undertaken substantial parameters are inter-event times, travel distances (displacements) and radius of gyration. They have been analyzed and simulated using computing platform by integrating various applications for huge database management, visualization, analysis, and simulation. Accordingly, the general population pattern law has been extracted. The study contribution outcomes have revealed both the individuals densities in static perspective and individuals mobility in dynamic perspective with multi levels of abstraction (macroscopic, mesoscopic, microscopic).
79 - Yang Yang , Haoyan Liu , Xia Hu 2018
The number of missing people (i.e., people who get lost) greatly increases in recent years. It is a serious worldwide problem, and finding the missing people consumes a large amount of social resources. In tracking and finding these missing people, t imely data gathering and analysis actually play an important role. With the development of social media, information about missing people can get propagated through the web very quickly, which provides a promising way to solve the problem. The information in online social media is usually of heterogeneous categories, involving both complex social interactions and textual data of diverse structures. Effective fusion of these different types of information for addressing the missing people identification problem can be a great challenge. Motivated by the multi-instance learning problem and existing social science theory of homophily, in this paper, we propose a novel r-instance (RI) learning model.
Standard deep neural networks (DNNs) are commonly trained in an end-to-end fashion for specific tasks such as object recognition, face identification, or character recognition, among many examples. This specificity often leads to overconfident models that generalize poorly to samples that are not from the original training distribution. Moreover, such standard DNNs do not allow to leverage information from heterogeneously annotated training data, where for example, labels may be provided with different levels of granularity. Furthermore, DNNs do not produce results with simultaneous different levels of confidence for different levels of detail, they are most commonly an all or nothing approach. To address these challenges, we introduce the concept of nested learning: how to obtain a hierarchical representation of the input such that a coarse label can be extracted first, and sequentially refine this representation, if the sample permits, to obtain successively refined predictions, all of them with the corresponding confidence. We explicitly enforce this behavior by creating a sequence of nested information bottlenecks. Looking at the problem of nested learning from an information theory perspective, we design a network topology with two important properties. First, a sequence of low dimensional (nested) feature embeddings are enforced. Then we show how the explicit combination of nested outputs can improve both the robustness and the accuracy of finer predictions. Experimental results on Cifar-10, Cifar-100, MNIST, Fashion-MNIST, Dbpedia, and Plantvillage demonstrate that nested learning outperforms the same network trained in the standard end-to-end fashion.
In this paper, we propose the MIML (Multi-Instance Multi-Label learning) framework where an example is described by multiple instances and associated with multiple class labels. Compared to traditional learning frameworks, the MIML framework is more convenient and natural for representing complicated objects which have multiple semantic meanings. To learn from MIML examples, we propose the MimlBoost and MimlSvm algorithms based on a simple degeneration strategy, and experiments show that solving problems involving complicated objects with multiple semantic meanings in the MIML framework can lead to good performance. Considering that the degeneration process may lose information, we propose the D-MimlSvm algorithm which tackles MIML problems directly in a regularization framework. Moreover, we show that even when we do not have access to the real objects and thus cannot capture more information from real objects by using the MIML representation, MIML is still useful. We propose the InsDif and SubCod algorithms. InsDif works by transforming single-instances into the MIML representation for learning, while SubCod works by transforming single-label examples into the MIML representation for learning. Experiments show that in some tasks they are able to achieve better performance than learning the single-instances or single-label examples directly.
With the increasing popularity of social media, online interpersonal communication now plays an essential role in peoples everyday information exchange. Whether and how a newcomer can better engage in the community has attracted great interest due to its application in many scenarios. Although some prior works that explore early socialization have obtained salient achievements, they are focusing on sociological surveys based on the small group. To help individuals get through the early socialization period and engage well in online conversations, we study a novel task to foresee whether a newcomers message will be responded to by other participants in a multi-party conversation (henceforth textbf{Successful New-entry Prediction}). The task would be an important part of the research in online assistants and social media. To further investigate the key factors indicating such engagement success, we employ an unsupervised neural network, Variational Auto-Encoder (textbf{VAE}), to examine the topic content and discourse behavior from newcomers chatting history and conversations ongoing context. Furthermore, two large-scale datasets, from Reddit and Twitter, are collected to support further research on new-entries. Extensive experiments on both Twitter and Reddit datasets show that our model significantly outperforms all the baselines and popular neural models. Additional explainable and visual analyses on new-entry behavior shed light on how to better join in others discussions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا