ﻻ يوجد ملخص باللغة العربية
Forecasting events like civil unrest movements, disease outbreaks, financial market movements and government elections from open source indicators such as news feeds and social media streams is an important and challenging problem. From the perspective of human analysts and policy makers, forecasting algorithms need to provide supporting evidence and identify the causes related to the event of interest. We develop a novel multiple instance learning based approach that jointly tackles the problem of identifying evidence-based precursors and forecasts events into the future. Specifically, given a collection of streaming news articles from multiple sources we develop a nested multiple instance learning approach to forecast significant societal events across three countries in Latin America. Our algorithm is able to identify news articles considered as precursors for a protest. Our empirical evaluation shows the strengths of our proposed approaches in filtering candidate precursors, forecasting the occurrence of events with a lead time and predicting the characteristics of different events in comparison to several other formulations. We demonstrate through case studies the effectiveness of our proposed model in filtering the candidate precursors for inspection by a human analyst.
The communication devices have produced digital traces for their users either voluntarily or not. This type of collective data can give powerful indications that are affecting the urban systems design and development. In this study mobile phone data
The number of missing people (i.e., people who get lost) greatly increases in recent years. It is a serious worldwide problem, and finding the missing people consumes a large amount of social resources. In tracking and finding these missing people, t
Standard deep neural networks (DNNs) are commonly trained in an end-to-end fashion for specific tasks such as object recognition, face identification, or character recognition, among many examples. This specificity often leads to overconfident models
In this paper, we propose the MIML (Multi-Instance Multi-Label learning) framework where an example is described by multiple instances and associated with multiple class labels. Compared to traditional learning frameworks, the MIML framework is more
With the increasing popularity of social media, online interpersonal communication now plays an essential role in peoples everyday information exchange. Whether and how a newcomer can better engage in the community has attracted great interest due to