ﻻ يوجد ملخص باللغة العربية
A temperature dependent coherent magnetization reversal model is proposed for size-distributed assemblies of ferromagnetic nanoparticles and ferromagnetic-antiferromagnetic core-shell nanoparticles. The nanoparticles are assumed to be of uniaxial anisotropy and all aligned along their easy axis. The thermal dependence is included by considering thermal fluctuations, implemented via the Neel-Arrhenius theory. Thermal and angular dependence of magnetization reversal loops, coercive field and exchange-bias field are obtained, showing that F-AF size-distributed exchange-coupled nanoparticles exhibit temperature-dependent asymmetric magnetization reversal. Also, non-monotonic evolutions of He and Hc with T are demonstrated. The angular dependence of Hc with T exhibits a complex behavior, with the presence of an apex, whose position and amplitude are strongly T dependent. The angular dependence of He with T exhibits complex behaviors, which depends on the AF anisotropy and exchange coupling. The resulting angular behavior demonstrates the key role of the size distribution and temperature in the magnetic response of nanoparticles.
We present an atomistic model of a single nanoparticle with core/shell structure that takes into account its lattice strucutre and spherical geometry, and in which the values of microscopic parameters such as anisotropy and exchange constants can be
We present a numerical simulation study of the exchange bias (EB) effect in nanoparticles with core/shell structure aimed to unveil the microscopic origin of some of the experimental phenomenology associated to this effect. In particular, we have foc
Some of the main experimental observations related to the occurrence of exchange bias in magnetic systems are reviewed, focusing the attention on the peculiar phenomenology associated to nanoparticles with core/shell structure as compared to thin fil
We present the results of Monte Carlo simulations of the magnetic properties of a model for a single nanoparticle consisting in a ferromagnetic core surrounded by an antiferromagnetic shell. The simulations of hysteresis loops after cooling in a magn
The utility of nanoscaled ferromagnetic particles requires both stabilized moments and maximized switching speeds. During reversal, the spatial modulation of the nanoparticle magnetization evolves in time, and the energy differences between each new