ترغب بنشر مسار تعليمي؟ اضغط هنا

Design of Ultra-compact Graphene-based Superscatterers

193   0   0.0 ( 0 )
 نشر من قبل Rujiang Li
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The energy-momentum dispersion relation is a fundamental property of plasmonic systems. In this paper, we show that the method of dispersion engineering can be used for the design of ultra-compact graphene-based superscatterers. Based on the Bohr model, the dispersion relation of the equivalent planar waveguide is engineered to enhance the scattering cross section of a dielectric cylinder. Bohr conditions with different orders are fulfilled in multiple dispersion curves at the same resonant frequency. Thus the resonance peaks from the first and second order scattering terms are overlapped in the deepsubwavelength scale by delicately tuning the gap thickness between two graphene layers. Using this ultra-compact graphene-based superscatterer, the scattering cross section of the dielectric cylinder can be enhanced by five orders of magnitude.



قيم البحث

اقرأ أيضاً

Graphene monolayers can be used for atomically thin three-dimensional shell-shaped superscatterer designs. Due to the excitation of the first-order resonance of transverse magnetic (TM) graphene plasmons, the scattering cross section of the bare subw avelength dielectric particle is enhanced significantly by five orders of magnitude. The superscattering phenomenon can be intuitively understood and interpreted with Bohr model. Besides, based on the analysis of Bohr model, it is shown that contrary to the TM case, superscattering is hard to occur by exciting the resonance of transverse electric (TE) graphene plasmons due to their poor field confinements.
We present full-Maxwell topology-optimization design of a single-piece multlayer metalens, about 10 wavelengths~$lambda$ in thickness, that simultaneously focuses over a $60^circ$ angular range and a 23% spectral bandwidth without suffering chromatic or angular aberration, a plan-achromat. At all angles and frequencies it achieves diffraction-limited focusing (Strehl ratio $> 0.8$) and absolute focusing efficiency $> 50$%. Both 2D and 3D axi-symmetric designs are presented, optimized over $sim 10^5$ degrees of freedom. We also demonstrate shortening the lens-to-sensor distance while producing the same image as for a longer virtual focal length and maintaining plan-achromaticity. These proof-of-concept designs demonstrate the ultra-compact multi-functionality that can be achieved by exploiting the full wave physics of subwavelength designs, and motivate future work on design and fabrication of multi-layer meta-optics.
Energy-efficient programmable photonic integrated circuits (PICs) are the cornerstone of on-chip classical and quantum optical technologies. Optical phase shifters constitute the fundamental building blocks which enable these programmable PICs. Thus far, carrier modulation and thermo-optical effect are the chosen phenomena for ultrafast and low-loss phase shifters, respectively; however, the state and information they carry are lost once the power is turned off-they are volatile. The volatility not only compromises energy efficiency due to their demand for constant power supply, but also precludes them from emerging applications such as in-memory computing. To circumvent this limitation, we introduce a novel phase shifting mechanism that exploits the nonvolatile refractive index modulation upon structural phase transition of Sb$_{2}$Se$_{3}$, an ultralow-loss phase change material. A zero-static power and electrically-driven phase shifter was realized on a foundry-processed silicon-on-insulator platform, featuring record phase modulation up to 0.09 $pi$/$mu$m and a low insertion loss of 0.3 dB/$pi$. We further pioneered a one-step partial amorphization scheme to enhance the speed and energy efficiency of PCM devices. A diverse cohort of programmable photonic devices were demonstrated based on the ultracompact PCM phase shifter.
With the growing demand for massive amounts of data processing transmission and storage it is becoming more challenging to optimize the trade off between high speed and energy consumption in current optoelectronic devices. Heterogeneous material inte gration into Silicon and Nitride photonics has demonstrated high speed potential but with millimeter to centimeter large footprints. The search for an electro optic modulator that combines high speed with energy efficiency and compactness to enable high component density on chip is yet ongoing. Here we demonstrate a 60 GHz fast (3dB roll off) micrometer compact and 4 fJ per bit efficient Graphene based modulator integrated on Silicon photonics platform. Two dual Graphene layers are capacitively biased into modulating the waveguide modes optical effective index via Pauli blocking mechanism. The electro optic response which is further enhanced by a vertical distributed Bragg reflector cavity thus reducing the drive voltage by about 40 times while preserving an adequate modulation depth (10 dB). Compact efficient and fast modulators enable high photonic chip density and performance with key applications in signal processing sensor platforms and analog and neuromorphic photonic processors.
120 - An He , Lu Sun , Hongwei Wang 2019
Due to the inherent in-direct bandgap nature of Silicon, heterogeneous integration of semiconductor lasers on Silicon on Insulator (SOI) is crucial for next-generation on-chip optical interconnects. Compact, high-efficient and high-tolerant couplers between III-V light source and silicon chips have been the challenge for photonic integrated circuit (PIC). Here, we redesign the taper adiabatic coupler with the total coupling length of only 4 {mu}m, and propose another two novel slot coupler and bridge-SWG coupler with both coupling length of 7 {mu}m, to heterogeneously integrate III-V lasers and silicon chips. We study theoretically the optical mode coupling process through the redesigned taper coupler, the final coupling results match well with the simulation in 3D-FDTD. The three compact couplers represent fundamental TE mode coupling efficiencies all over 90%, even 95.7% for bridge-SWG coupler, to the best of our knowledge, are also the shortest coupling structures (7 um). Moreover, these coupling structures also possess excellent fabrication tolerance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا