ترغب بنشر مسار تعليمي؟ اضغط هنا

Short-range photoassociation from the inner wall of the lowest triplet potential of $^{85}$Rb$_2$

111   0   0.0 ( 0 )
 نشر من قبل Ryan Carollo
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ultracold photoassociation is typically performed at large internuclear separations, where the scattering wavefunction amplitude is large and Franck-Condon overlap is maximized. Recently, work by this group and others on alkali-metal diatomics has shown that photoassociation can efficiently form molecules at short internuclear distance in both homonuclear and heteronuclear dimers. We propose that this short-range photoassociation is due to excitation near the wavefunction amplitude maximum at the inner wall of the lowest triplet potential. We show that Franck-Condon factors from the highest-energy bound state can almost precisely reproduce Franck-Condon factors from a low-energy scattering state, and that both calculations match experimental data from the near-zero positive-energy scattering state with reasonable accuracy. We also show that the corresponding photoassociation from the inner wall of the ground-state singlet potential at much shorter internuclear distance is weaker and undetectable under our current experimental conditions. We predict from Franck-Condon factors that the strongest of these weaker short-range photoassociation transitions are one order of magnitude below our current sensitivity.

قيم البحث

اقرأ أيضاً

We investigate the dynamical process of optically trapped X$^{1}$$Sigma$$^{+}$ (v = 0) state $^{85}$Rb$^{133}$Cs molecules distributing in J = 1 and J = 3 rotational states. The considered molecules, formed from short-range photoassociation of mixed cold atoms, are subsequently confined in a crossed optical dipole trap. Based on a phenomenological rate equation, we provide a detailed study of the dynamics of $^{85}$Rb$^{133}$Cs molecules during the loading and holding processes. The inelastic collisions of $^{85}$Rb$^{133}$Cs molecules in the X$^{1}$$Sigma$$^{+}$ (v = 0, J = 1 and J = 3) states with ultracold $^{85}$Rb (or $^{133}$Cs) atoms are measured to be 1.0 (2)$times$10$^{-10}$ cm$^{3}$s$^{-1}$ (1.2 (3)$ times$ 10$^{-10}$ cm$^{3}$s$^{-1}$). Our work provides a simple and generic procedure for studying the dynamical process of trapped cold molecules in the singlet ground states.
We have observed short-range photoassociation of LiRb to the two lowest vibrational states of the $d,^3Pi$ potential. These $d,^3Pi$ molecules then spontaneously decay to vibrational levels of the $a^3,Sigma^+$ state with generation rates of $sim10^3 $ molecules per second. This is the first observation of many of these $a,^3Sigma^+$ levels. We observe an alternation of the peak heights in the rotational photoassociation spectrum that suggests a $p$-wave shape resonance in the scattering state. Franck-Condon overlap calculations predict that photoassociation to higher vibrational levels of the $d,^3Pi$, in particular the sixth vibrational level, should populate the lowest vibrational level of the $a,^3Sigma^+$ state with a rate as high as $10^4$ molecules per second. These results encourage further work to explain our observed LiRb collisional physics using PECs. This work also motivates an experimental search for short-range photoassociation to other bound molecules, such as the $c,^3Sigma^+$ or $b,^3Pi$, as prospects for preparing ground-state molecules.
158 - H. K. Pechkis , D. Wang , Y. Huang 2007
We have studied the effect of resonant electronic state coupling on the formation of ultracold ground-state $^{85}$Rb$_2$. Ultracold Rb$_2$ molecules are formed by photoassociation (PA) to a coupled pair of $0_u^+$ states, $0_u^+(P_{1/2})$ and $0_u^+ (P_{3/2})$, in the region below the $5S+5P_{1/2}$ limit. Subsequent radiative decay produces high vibrational levels of the ground state, $X ^1Sigma_g^+$. The population distribution of these $X$ state vibrational levels is monitored by resonance-enhanced two-photon ionization through the $2 ^1Sigma_u^+$ state. We find that the populations of vibrational levels $v$=112$-$116 are far larger than can be accounted for by the Franck-Condon factors for $0_u^+(P_{1/2}) to X ^1Sigma_g^+$ transitions with the $0_u^+(P_{1/2})$ state treated as a single channel. Further, the ground-state molecule population exhibits oscillatory behavior as the PA laser is tuned through a succession of $0_u^+$ state vibrational levels. Both of these effects are explained by a new calculation of transition amplitudes that includes the resonant character of the spin-orbit coupling of the two $0_u^+$ states. The resulting enhancement of more deeply bound ground-state molecule formation will be useful for future experiments on ultracold molecules.
123 - C.Gabbanini , O.Dulieu 2011
Ultracold metastable RbCs molecules are observed in a double species MOT through photoassociation near the Rb(5S$_{1/2}$)+Cs(6P$_{3/2}$) dissociation limit followed by radiative stabilization. The molecules are formed in their lowest triplet electron ic state and are detected by resonant enhanced two-photon ionization through the previously unobserved $(3)^{3}Pi leftarrow a^{3}Sigma^{+}$ band. The large rotational structure of the observed photoassociation lines is assigned to the lowest vibrational levels of the $0^+,0^-$ excited states correlated to the Rb(5P$_{1/2}$)+Cs(6S$_{1/2}$) dissociation limit. This demonstrates the possibility to induce direct photoassociation in heteronuclear alkali-metal molecules at short internuclear distance, as pointed out in [J. Deiglmayr textit{et al.}, Phys. Rev. Lett. textbf{101}, 13304 (2008)].
We present the results of an experimental and theoretical study of the electronically excited $tripletex$ state of $^{87}$Rb$_2$ molecules. The vibrational energies are measured for deeply bound states from the bottom up to $v=15$ using laser spectro scopy of ultracold Rb$_2$ Feshbach molecules. The spectrum of each vibrational state is dominated by a 47,GHz splitting into a $cog$ and $clg$ component caused mainly by a strong second order spin-orbit interaction. Our spectroscopy fully resolves the rotational, hyperfine, and Zeeman structure of the spectrum. We are able to describe to first order this structure using a simplified effective Hamiltonian.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا