ترغب بنشر مسار تعليمي؟ اضغط هنا

Remarks on the pion-nucleon sigma-term

105   0   0.0 ( 0 )
 نشر من قبل Martin Hoferichter
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The pion-nucleon $sigma$-term can be stringently constrained by the combination of analyticity, unitarity, and crossing symmetry with phenomenological information on the pion-nucleon scattering lengths. Recently, lattice calculations at the physical point have been reported that find lower values by about $3sigma$ with respect to the phenomenological determination. We point out that a lattice measurement of the pion-nucleon scattering lengths could help resolve the situation by testing the values extracted from spectroscopy measurements in pionic atoms.

قيم البحث

اقرأ أيضاً

We present an extraction of the pion-nucleon ($pi N$) scattering lengths from low-energy $pi N$ scattering, by fitting a representation based on Roy-Steiner equations to the low-energy data base. We show that the resulting values confirm the scatteri ng-length determination from pionic atoms, and discuss the stability of the fit results regarding electromagnetic corrections and experimental normalization uncertainties in detail. Our results provide further evidence for a large $pi N$ $sigma$-term, $sigma_{pi N}=58(5)$ MeV, in agreement with, albeit less precise than, the determination from pionic atoms.
We have reanalyzed the $pi ^{pm} p$ scattering data at low energy in the Coulomb-nuclear interference region as measured by the CHAOS group at TRIUMF with the aim to determine the pion-nucleon $sigma$ term. The resulting value $sigma=(44pm 12)$ MeV, while in agreement with lattice QCD calculations and compatible with other recent analyses, is significantly lower than that from the GWU-TRIUMF analysis of 2002.
152 - C. B. Lang , V. Verduci 2012
We study the coupled pion-nucleon system (negative parity, isospin 1/2) based on a lattice QCD simulation for nf=2 mass degenerate light quarks. Both, standard 3-quarks baryon operators as well as meson-baryon (4+1)-quark operators are included. This is an exploratory study for just one lattice size and lattice spacing and at a pion mass of 266 MeV. Using the distillation method and variational analysis we determine energy levels of the lowest eigenstates. Comparison with the results of simple 3-quark correlation studies exhibits drastic differences and a new level appears. A clearer picture of the negative parity nucleon spectrum emerges. For the parameters of the simulation we may assume elastic s-wave scattering and can derive values of the phase shift.
117 - S. Durr , Z. Fodor , J. Frison 2010
A status report is given for a joint project of the Budapest-Marseille-Wuppertal collaboration and the Regensburg group to study the quark mass-dependence of octet baryons in SU(3) Baryon XPT. This formulation is expected to extend to larger masses t han Heavy-Baryon XPT. Its applicability is tested with 2+1 flavor data which cover three lattice spacings and pion masses down to about 190 MeV, in large volumes. Also polynomial and rational interpolations in M_pi^2 and M_K^2 are used to assess the uncertainty due to the ansatz. Both frameworks are combined to explore the precision to be expected in a controlled determination of the nucleon sigma term and strangeness content.
We report the first Lattice QCD calculation using the almost physical pion mass mpi=149 MeV that agrees with experiment for four fundamental isovector observables characterizing the gross structure of the nucleon: the Dirac and Pauli radii, the magne tic moment, and the quark momentum fraction. The key to this success is the combination of using a nearly physical pion mass and excluding the contributions of excited states. An analogous calculation of the nucleon axial charge governing beta decay has inconsistencies indicating a source of bias at low pion masses not present for the other observables and yields a result that disagrees with experiment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا