ﻻ يوجد ملخص باللغة العربية
Here we present a model for a small system combined with an explicit entropy bath that is comparably small. The dynamics of the model is defined by a simple matrix, M. Each row of M corresponds to a macrostate of the system, e.g. net alignment, while the elements in the row represent microstates. The constant number of elements in each row ensures constant entropy, which allows reversible fluctuations, similar to information theory where a constant number of bits allows reversible computations. Many elements in M come from the microstates of the system, but many others come from the bath. Bypassing the bath states yields fluctuations that exhibit standard white noise; whereas with bath states the power spectral density varies as S(f)~1/f over a wide range of frequencies, f. Thus, the explicit entropy bath is the mechanism of 1/f noise in this model. Both forms of the model match Crooks fluctuation theorem exactly, indicating that the theorem applies not only to infinite reservoirs, but also to finite-sized baths. The model is used to analyze measurements of 1/f-like noise from a sub-micron tunnel junction.
Fluctuation theorems establish deep relations between observables away from thermal equilibrium. Until recently, the research on fluctuation theorems was focused on time-reversal-invariant systems. In this review we address some newly discovered fluc
The power spectrum of quantum dot fluorescence exhibits $1/f^beta$ noise, related to the intermittency of these nanosystems. As in other systems exhibiting $1/f$ noise, this power spectrum is not integrable at low frequencies, which appears to imply
The effect of a change of noise amplitudes in overdamped diffusive systems is linked to their unperturbed behavior by means of a nonequilibrium fluctuation-response relation. This formula holds also for systems with state-independent nontrivial diffu
Internal mechanism leading to the emergence of the widely occurring 1/f noise still remains an open issue. In this paper we investigate the distinction between internal time of the system and the physical time as a source of 1/f noise. After demonstr
Noise of stochastic processes whose power spectrum scales at low frequencies, $f$, as $1/f$ appears in such diverse systems that it is considered universal. However, there have been a small number of instances from completely unrelated fields, e.g.,