ﻻ يوجد ملخص باللغة العربية
Helicity is a topological invariant that measures the linkage and knottedness of lines, tubes and ribbons. As such, it has found myriads of applications in astrophysics and solar physics, in fluid dynamics, in atmospheric sciences, and in biology. In quantum flows, where topology-changing reconnection events are a staple, helicity appears as a key quantity to study. However, the usual definition of helicity is not well posed in quantum vortices, and its computation based on counting links and crossings of vortex lines can be downright impossible to apply in complex and turbulent scenarios. We present a new definition of helicity which overcomes these problems. With it, we show that only certain reconnection events conserve helicity. In other cases helicity can change abruptly during reconnection. Furthermore, we show that these events can also excite Kelvin waves, which slowly deplete helicity as they interact nonlinearly, thus linking the theory of vortex knots with observations of quantum turbulence.
By solving numerically the governing Gross-Pitaevskii equation, we study the dynamics of Kelvin waves on a superfluid vortex. After determining the dispersion relation, we monitor the turbulent decay of Kelvin waves with energy initially concentrated
We experimentally investigate internal coastal Kelvin waves in a two-layer fluid system on a rotating table. Waves in our system propagate in the prograde direction and are exponentially localized near the boundary. Our experiments verify the theoret
The failed vortex-atoms theory of matter by Kelvin and Tait had a profound impact on mathematics and physics. Building on the understanding of vorticity by Helmholtz, and observing stability of smoke rings, they hypothesised that elementary particles
Vortex breakdown phenomena in the axial vortices is an important feature which occurs frequently in geophysical flows (tornadoes and hurricanes) and in engineering flows (flow past delta wings, Von-Kerman vortex dynamo). We analyze helicity for axisy
We present a method for numerically building a vortex knot state in the superfluid wave-function of a Bose-Einstein condensate. We integrate in time the governing Gross-Pitaevskii equation to determine evolution and stability of the two (topologicall