ﻻ يوجد ملخص باللغة العربية
This paper discusses the empirical evidence of Tsallis statistical functions in the personal income distribution of Brazil. Yearly samples from 1978 to 2014 were linearized by the q-logarithm and straight lines were fitted to the entire range of the income data in all samples, producing a two-parameters-only single function representation of the whole distribution in every year. The results showed that the time evolution of the parameters is periodic and plotting one in terms of the other reveals a cycle mostly clockwise. It was also found that the empirical data oscillate periodically around the fitted straight lines with the amplitude growing as the income values increase. Since the entire income data range can be fitted by a single function, this raises questions on previous results claiming that the income distribution is constituted by a well defined two-classes-base income structure, since such a division in two very distinct income classes might not be an intrinsic property of societies, but a consequence of an a priori fitting-choice procedure that may leave aside possibly important income dynamics at the intermediate levels.
This work presents an empirical study of the evolution of the personal income distribution in Brazil. Yearly samples available from 1978 to 2005 were studied and evidence was found that the complementary cumulative distribution of personal income for
Capital usually leads to income, and income is more accurately and easily measured. Thus we summarize income distributions in USA, Germany, etc.
Under conditions of market equilibrium, the distribution of capital income follows a Pareto power law, with an exponent that characterizes the given equilibrium. Here, a simple taxation scheme is proposed such that the post-tax capital income distrib
We analyze several florae (collections of plant species populating specific areas) in different geographic and climatic regions. For every list of species we produce a taxonomic classification tree and we consider its statistical properties. We find
Cascading large-amplitude bursts in neural activity, termed avalanches, are thought to provide insight into the complex spatially distributed interactions in neural systems. In human neuroimaging, for example, avalanches occurring during resting-stat