ترغب بنشر مسار تعليمي؟ اضغط هنا

Recurrent delocalization and quasi-equilibration of photons in coupled circuit QED systems

95   0   0.0 ( 0 )
 نشر من قبل Mahn-Soo Choi
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We explore the photon population dynamics in two coupled circuit QED systems. For a sufficiently weak inter-cavity photon hopping, as the photon-cavity coupling increases, the dynamics undergoes double transitions first from a delocalized to a localized phase and then from the localized to another delocalized phase. The latter delocalized phase is distinguished from the former one; instead of oscillating between the two cavities, the photons rapidly quasi-equilibrate over the two cavities. These intrigues are attributed to an interplay between two qualitatively distinctive nonlinear behaviors of the circuit QED systems in the utrastrong coupling regime, whose distinction has been widely overlooked.

قيم البحث

اقرأ أيضاً

We propose a hybrid quantum architecture for engineering a photonicMott insulator-superfluid phase transition in a two-dimensional (2D) square lattice of a superconducting transmission line resonator (TLR) coupled to a single nitrogen-vacancy (NV) ce nter encircled by a persistent current qubit. The localization-delocalization transition results from the interplay between the on-site repulsion and the nonlocal tunneling. The phase boundary in the case of photon hopping with real-valued and complex-valued amplitudes can be obtained using the mean-field approach. Also, the quantum jump technique is employed to describe the phase diagram when the dissipative effects are considered. The unique feature of our architecture is the good tunability of effective on-site repulsion and photon-hopping rate, and the local statistical property of TLRs which can be analyzed readily using presentmicrowave techniques. Our work opens new perspectives in quantum simulation of condensed-matter and many-body physics using a hybrid spin circuit-QED system. The experimental challenges are realizable using currently available technologies.
115 - A. Frisk Kockum , L. Tornberg , 2012
We analyze the backaction of homodyne detection and photodetection on superconducting qubits in circuit quantum electrodynamics. Although both measurement schemes give rise to backaction in the form of stochastic phase rotations, which leads to depha sing, we show that this can be perfectly undone provided that the measurement signal is fully accounted for. This result improves upon that of Phys. Rev. A, 82, 012329 (2010), showing that the method suggested can be made to realize a perfect two-qubit parity measurement. We propose a benchmarking experiment on a single qubit to demonstrate the method using homodyne detection. By analyzing the limited measurement efficiency of the detector and bandwidth of the amplifier, we show that the parameter values necessary to see the effect are within the limits of existing technology.
Superconducting circuits are one of the leading quantum platforms for quantum technologies. With growing system complexity, it is of crucial importance to develop scalable circuit models that contain the minimum information required to predict the be haviour of the physical system. Based on microwave engineering methods, divergent and non-divergent Hamiltonian models in circuit quantum electrodynamics have been proposed to explain the dynamics of superconducting quantum networks coupled to infinite-dimensional systems, such as transmission lines and general impedance environments. Here, we study systematically common linear coupling configurations between networks and infinite-dimensional systems. The main result is that the simple Lagrangian models for these configurations present an intrinsic natural length that provides a natural ultraviolet cutoff. This length is due to the unavoidable dressing of the environment modes by the network. In this manner, the coupling parameters between their components correctly manifest their natural decoupling at high frequencies. Furthermore, we show the requirements to correctly separate infinite-dimensional coupled systems in local bases. We also compare our analytical results with other analytical and approximate methods available in the literature. Finally, we propose several applications of these general methods to analog quantum simulation of multi-spin-boson models in non-perturbative coupling regimes.
We present a scheme for simulating relativistic quantum physics in circuit quantum electrodynamics. By using three classical microwave drives, we show that a superconducting qubit strongly-coupled to a resonator field mode can be used to simulate the dynamics of the Dirac equation and Klein paradox in all regimes. Using the same setup we also propose the implementation of the Foldy-Wouthuysen canonical transformation, after which the time derivative of the position operator becomes a constant of the motion.
Photonic states of superconducting microwave cavities controlled by transmon ancillas provide a platform for encoding and manipulating quantum information. A key challenge in scaling up the platform is the requirement to communicate on demand the inf ormation between the cavities. It has been recently demonstrated that a tunable bilinear interaction between two cavities can be realized by coupling them to a bichromatically-driven transmon ancilla, which allows swapping and interfering the multi-photon states of the cavities [Gao et al., Phys. Rev. X 8, 021073(2018)]. Here, we explore both theoretically and experimentally the regime of relatively strong drives on the ancilla needed to achieve fast SWAP gates but which can also lead to undesired non-perturbative effects that lower the SWAP fidelity. We develop a theoretical formalism based on linear response theory that allows one to calculate the rate of ancilla-induced interaction, decay and frequency shift of the cavities in terms of a susceptibility matrix. We treat the drives non-perturbatively using Floquet theory, and find that the interference of the two drives can strongly alter the system dynamics even in the regime where the rotating wave approximation applies. We identify two major sources of infidelity due to ancilla decoherence. i) Ancilla dissipation and dephasing leads to incoherent hopping among Floquet states which occurs even when the ancilla is at zero temperature, resulting in a sudden change of the SWAP rate. ii) The cavities inherit finite decay from the relatively lossy ancilla through the inverse Purcell effect; the effect can be enhanced when the drive-induced AC Stark shift pushes certain ancilla transition frequencies to the vicinity of the cavity frequencies. The theoretical predictions agree quantitatively with the experimental results, paving the way for using the theory to design future experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا