ﻻ يوجد ملخص باللغة العربية
Observationally, weak lensing has been served so far by optical surveys due to the much larger number densities of background galaxies achieved, which is typically by two to three orders of magnitude compared to radio. However, the high sensitivity of the new generation of radio telescopes such as the Square Kilometre Array (SKA) will provide a density of detected galaxies that is comparable to that found at optical wavelengths, and with significant source shape measurements to make large area radio surveys competitive for weak lensing studies. This will lead weak lensing to become one of the primary science drivers in radio surveys too, with the advantage that they will access the largest scales in the Universe going beyond optical surveys, like LSST and Euclid, in terms of redshifts that are probed. RadioLensfit is an adaptation to radio data of lensfit, a model-fitting approach for galaxy shear measurement, originally developed for optical weak lensing surveys. Its key advantage is working directly in the visibility domain, which is the natural approach to adopt with radio data, avoiding systematics due to the imaging process. We present results on galaxy shear measurements, including investigation of sensitivity to instrumental parameters such as the visibilities gridding size, based on simulations of individual galaxy visibilities performed by using SKA1-MID baseline configuration. We get an amplitude of the shear bias in the method comparable with SKA1 requirements for a population of galaxies with realistic flux and scalelength distributions estimated from the VLA SWIRE catalog.
This paper extends the method introduced in Rivi et al. (2016b) to measure galaxy ellipticities in the visibility domain for radio weak lensing surveys. In that paper we focused on the development and testing of the method for the simple case of indi
This is the third paper on the improvements of systematic errors in our weak lensing analysis using an elliptical weight function, called E-HOLICs. In the previous papers we have succeeded in avoiding error which depends on ellipticity of background
A likelihood-based method for measuring weak gravitational lensing shear in deep galaxy surveys is described and applied to the Canada-France-Hawaii Telescope (CFHT) Lensing Survey (CFHTLenS). CFHTLenS comprises 154 sq deg of multicolour optical data
Weak gravitational lensing of background galaxies provides a direct probe of the projected matter distribution in and around galaxy clusters. Here we present a self-contained pedagogical review of cluster--galaxy weak lensing, covering a range of top
The weak-lensing science of the LSST project drives the need to carefully model and separate the instrumental artifacts from the intrinsic lensing signal. The dominant source of the systematics for all ground based telescopes is the spatial correlati