ﻻ يوجد ملخص باللغة العربية
We consider the non-equilibrium dynamics of two-component one dimensional quantum gases in the limit of extreme population imbalance where the minority species has but a single particle. We consider the situation where the gas is prepared in a state with a single spatially localized exciton: the single particle of the minority species is spatially localized while the density of the majority species in the vicinity of the minority particle sees a depression. Remarkably, we are able to consider cases where the gas contains on the order of $N=100$ particles, comparable to that studied in experiments on cold atomic gases. We are able to do by exploiting the integrability of the gas together with the observation that the excitonic state can be constructed through a simple superposition of exact eigenstates of the gas. The number of states in this superposition, rather than being exponentially large in the number of particles, scales linearly with $N$. We study the evolution of such spatially localized states in both strongly interacting Bose and Fermi gases. The behavior of the light cones when the interaction strength and density of the gas is varied can be understood from exact results for the spin excitation spectrum in these systems. We argue that the light cone in both cases exhibits scaling collapse. However unique to the Bose gas, we show that the presence of gapped finite-momentum roton-like excitations provide the Bose gas dynamics with secondary light cones.
We study a one-dimensional two-component atomic Fermi gas with an infinite intercomponent contact repulsion. It is found that adding an attractive resonant odd-wave interaction breaking the rotational symmetry one can make the ground state ferromagne
We discuss the mean-field theories obtained from the leading order in a large-$N$ approximation for one- and two- component dilute Bose gases. For a one-component Bose gas this approximation has the following properties: the Bose-Einstein condensatio
We study the ground-state phase diagram of two-dimensional two-component (or pseudospin-1/2) Bose gases in a high synthetic magnetic field in the space of the total filling factor and the ratio of the intercomponent coupling $g_{uparrowdownarrow}$ to
The miscibility of two interacting quantum systems is an important testing ground for the understanding of complex quantum systems. Two-component Bose-Einstein condensates enable the investigation of this scenario in a particularly well controlled se
We study a three-component superfluid Fermi gas in a spherically symmetric harmonic trap using the Bogoliubov-deGennes method. We predict a coexistence phase in which two pairing field order parameters are simultaneously nonzero, in stark contrast to