ترغب بنشر مسار تعليمي؟ اضغط هنا

A unique model for the variety of multiple populations formation(s) in globular clusters: a temporal sequence

81   0   0.0 ( 0 )
 نشر من قبل Francesca D'Antona
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We explain the multiple populations recently found in the prototype Globular Cluster (GC) NGC 2808 in the framework of the asymptotic giant branch (AGB) scenario. The chemistry of the five -or more- populations is approximately consistent with a sequence of star formation events, starting after the supernovae type II epoch, lasting approximately until the time when the third dredge up affects the AGB evolution (age ~90-120Myr), and ending when the type Ia supernovae begin exploding in the cluster, eventually clearing it from the gas. The formation of the different populations requires episodes of star formation in AGB gas diluted with different amounts of pristine gas. In the nitrogen-rich, helium-normal population identified in NGC 2808 by the UV Legacy Survey of GCs, the nitrogen increase is due to the third dredge up in the smallest mass AGB ejecta involved in the star formation of this population. The possibly-iron-rich small population in NGC 2808 may be a result of contamination by a single type Ia supernova. The NGC 2808 case is used to build a general framework to understand the variety of second generation stars observed in GCs. Cluster-to-cluster variations are ascribed to differences in the effects of the many processes and gas sources which may be involved in the formation of the second generation. We discuss an evolutionary scheme, based on pollution by delayed type II supernovae, which accounts for the properties of s-Fe-anomalous clusters.



قيم البحث

اقرأ أيضاً

Since the discovery of chemically peculiar stars in globular clusters in the last century, the study of multiple populations has become increasingly important, given that chemical inhomogeneity is found in almost all globular clusters. Despite variou s proposed theories attempting to explain this phenomenon, fitting all the observational evidence in globular clusters with one single theory remains notoriously difficult and currently unsuccessful. In order to improve existing models and motivate new ones, we are observing globular clusters at critical conditions, e.g., metal-rich end, metal-poor end, and low mass end. In this paper, we present our first attempt to investigate multiple populations in low mass globular clusters. We obtained low-resolution spectra around 4000 A of 30 members of the globular cluster Palomar 13 using OSIRIS/Multi-object spectrograph mounted at the Gran Telescopio Canarias. The membership of red giant branch stars is confirmed by the latest proper motions from Gaia DR2 and literature velocities. After comparing the measured CN and CH spectral indices with those of the stellar models, we found a clear sign of nitrogen variation among the red giant branch stars. Palomar 13 may be the lowest mass globular cluster showing multiple populations.
102 - Mark Gieles 2019
Globular clusters (GCs) display anomalous light element abundances (HeCNONaMgAl), resembling the yields of hot-hydrogen burning, but there is no consensus yet on the origin of these ubiquitous multiple populations. We present a model in which a super -massive star (SMS, >10^3 Msun) forms via stellar collisions during GC formation and pollutes the intra-cluster medium. The growth of the SMS finds a balance with the wind mass loss rate, such that the SMS can produce a significant fraction of the total GC mass in processed material, thereby overcoming the so-called mass-budget problem that plagues other models. Because of continuous rejuvenation, the SMS acts as a `conveyer-belt of hot-hydrogen burning yields with (relatively) low He abundances, in agreement with empirical constraints. Additionally, the amount of processed material per unit of GC mass correlates with GC mass, addressing the specific mass budget problem. We discuss uncertainties and tests of this new self-enrichment scenario.
56 - Nate Bastian 2015
A number of scenarios have been put forward to explain the origin of the chemical anomalies (and resulting complex colour-magnitude diagrams) observed in globular clusters (GCs), namely the AGB, Fast Rotating Massive Star, Very Massive Star, and Earl y Disc Accretion scenarios. We compare the predictions of these scenarios with a range of observations (including young massive clusters (YMCs), chemical patterns, and GC population properties) and find that all models are inconsistent with observations. In particular, YMCs do not show evidence for multiple epochs of star-formation and appear to be gas free by an age of ~3 Myr. Also, the chemical patterns displayed in GCs vary from one to the next in such a way that cannot be reproduced by standard nucleosynthetic yields. Finally, we show that the mass budget problem for the scenarios cannot be solved by invoking heavy cluster mass loss (i.e. that clusters were 10-100 times more massive at birth) as this solution makes basic predictions about the GC population that are inconsistent with observations. We conclude that none of the proposed scenarios can explain the multiple population phenomenon, hence alternative theories are needed.
In the present work we analyzed seven globular clusters selected from their location in the Galactic bulge and with metallicity values in the range $-1.30lesssimrm{[Fe/H]}lesssim-0.50$. The aim of this work is first to derive cluster ages assuming si ngle stellar populations, and secondly, to identify the stars from first (1G) and second generations (2G) from the main sequence, subgiant and red giant branches, and to derive their age differences. Based on a combination of UV and optical filters used in this project, we apply the Gaussian mixture models to distinguish the multiple stellar populations. Applying statistical isochrone fitting, we derive self-consistent ages, distances, metallicities, and reddening values for the sample clusters. An average of $12.3pm0.4$ Gyr was obtained both using Dartmouth and BaSTI (accounting atomic diffusion effects) isochrones, without a clear distinction between the moderately metal-poor and the more metal-rich bulge clusters, except for NGC 6717 and the inner halo NGC 6362 with $sim 13.5$ Gyr. We derived a weighted mean age difference between the multiple populations hosted by each globular cluster of $41pm170$ Myr adopting canonical He abundances; whereas for higher He in 2G stars, this difference reduces to $17pm170$ Myr, but with individual uncertainties of $500$ Myr.
It is now well established that globular clusters (GCs) exhibit star-to-star light-element abundance variations (known as multiple stellar populations, MPs). Such chemical anomalies have been found in (nearly) all the ancient GCs (more than 10 Gyr ol d) of our Galaxy and its close companions, but so far no model for the origin of MPs is able to reproduce all the relevant observations. To gain new insights into this phenomenon, we have undertaken a photometric Hubble Space Telescope survey to study clusters with masses comparable to that of old GCs, where MPs have been identified, but with significantly younger ages. Nine clusters in the Magellanic Clouds with ages between $sim$ 1.5-11 Gyr have been targeted in this survey. We confirm the presence of multiple populations in all clusters older than 6 Gyr and we add NGC 1978 to the group of clusters for which MPs have been identified. With an age of $sim$ 2 Gyr, NGC 1978 is the youngest cluster known to host chemical abundance spreads found to date. We do not detect evident star-to-star variations for slightly younger massive clusters ($sim$ 1.7 Gyr), thus pointing towards an unexpected age dependence for the onset of multiple populations. This discovery suggests that the formation of MPs is not restricted to the early Universe and that GCs and young massive clusters share common formation and evolutionary processes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا