ﻻ يوجد ملخص باللغة العربية
We present a construction of new bound entangled states from given bound entangled states for arbitrary dimensional bipartite systems. One way to construct bound entangled states is to show that these states are PPT (positive partial transpose) and violate the range criterion at the same time. By applying certain operators to given bound entangled states or to one of the subsystems of the given bound entangled states, we obtain a set of new states which are both PPT and violate the range criterion. We show that the derived bound entangled states are not local unitary equivalent to the original bound entangled states by detail examples.
We derive an explicit analytic estimate for the entanglement of a large class of bipartite quantum states which extends into bound entanglement regions. This is done by using an efficiently computable concurrence lower bound, which is further employe
Bound entanglement, being entangled yet not distillable, is essential to our understandings of the relations between nonlocality and entanglement besides its applications in certain quantum information tasks. Recently, bound entangled states that vio
We construct a family of map which is shown to be positive when imposing certain condition on the parameters. Then we show that the constructed map can never be completely positive. After tuning the parameters, we found that the map still remain posi
Preparing and certifying bound entangled states in the laboratory is an intrinsically hard task, due to both the fact that they typically form narrow regions in the state space, and that a certificate requires a tomographic reconstruction of the dens
Constructing local hidden variable (LHV) models for entangled quantum states is challenging, as the model should reproduce quantum predictions for all possible local measurements. Here we present a simple method for building LHV models, applicable to