ترغب بنشر مسار تعليمي؟ اضغط هنا

Spatially resolved dust emission of extremely metal poor galaxies

82   0   0.0 ( 0 )
 نشر من قبل Yong Shi
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present infrared (IR) spectral energy distributions (SEDs) of individual star-forming regions in four extremely metal poor (EMP) galaxies with metallicity Z around Zsun/10 as observed by the Herschel Space Observatory. With the good wavelength coverage of the SED, it is found that these EMP star-forming regions show distinct SED shapes as compared to those of grand design Spirals and higher metallicity dwarfs: they have on average much higher f70um/f160um ratios at a given f160um/f250um ratio; single modified black-body (MBB) fittings to the SED at lambda >= 100 um still reveal higher dust temperatures and lower emissivity indices compared to that of Spirals, while two MBB fittings to the full SED with a fixed emissivity index (beta = 2) show that even at 100 um about half of the emission comes from warm (50 K) dust, in contrast to the cold (~20 K) dust component. Our spatially resolved images further reveal that the far-IR colors including f70um/f160um, f160um/f250um and f250um/f350um are all related to the surface densities of young stars as traced by far-UV, 24 um and SFRs, but not to the stellar mass surface densities. This suggests that the dust emitting at wavelengths from 70 um to 350 um is primarily heated by radiation from young stars.



قيم البحث

اقرأ أيضاً

169 - C. Kehrig 2017
Extremely metal-poor, high-ionizing starbursts in the local Universe provide unique laboratories for exploring in detail the physics of high-redshift systems. Also, their ongoing star-formation and haphazard morphology make them outstanding proxies f or primordial galaxies. Using integral field spectroscopy, we spatially resolved the ISM properties and massive stars of two first-class low metallicity galaxies with Wolf-Rayet features and nebular HeII emission: Mrk178 and IZw18. In this review, we summarize our main results for these two objects.
168 - Yong Shi 2014
The first galaxies contain stars born out of gas with little or no metals. The lack of metals is expected to inhibit efficient gas cooling and star formation but this effect has yet to be observed in galaxies with oxygen abundance relative to hydroge n below a tenth of that of the Sun. Extremely metal poor nearby galaxies may be our best local laboratories for studying in detail the conditions that prevailed in low metallicity galaxies at early epochs. Carbon Monoxide (CO) emission is unreliable as tracers of gas at low metallicities, and while dust has been used to trace gas in low-metallicity galaxies, low-spatial resolution in the far-infrared has typically led to large uncertainties. Here we report spatially-resolved infrared observations of two galaxies with oxygen abundances below 10 per cent solar, and show that stars form very inefficiently in seven star-forming clumps of these galaxies. The star formation efficiencies are more than ten times lower than found in normal, metal rich galaxies today, suggesting that star formation may have been very inefficient in the early Universe.
The extremely metal-poor (XMP) galaxies analyzed in a previous paper have large star-forming regions with a metallicity lower than the rest of the galaxy. Such a chemical inhomogeneity reveals the external origin of the metal-poor gas fueling star fo rmation, possibly indicating accretion from the cosmic web. This paper studies the kinematic properties of the ionized gas in these galaxies. Most XMPs have rotation velocity around a few tens of km/s. The star-forming regions appear to move coherently. The velocity is constant within each region, and the velocity dispersion sometimes increases within the star-forming clump towards the galaxy midpoint, suggesting inspiral motion toward the galaxy center. Other regions present a local maximum in velocity dispersion at their center, suggesting a moderate global expansion. The Halpha line wings show a number of faint emission features with amplitudes around a few percent of the main Halpha component, and wavelength shifts between 100 and 400 km/s. The components are often paired, so that red and blue emission features with similar amplitudes and shifts appear simultaneously. Assuming the faint emission to be produced by expanding shell-like structures, the inferred mass loading factor (mass loss rate divided by star formation rate) exceeds 10. Since the expansion velocity exceeds by far the rotational and turbulent velocities, the gas may eventually escape from the galaxy disk. The observed motions involve energies consistent with the kinetic energy released by individual core-collapse supernovae. Alternative explanations for the faint emission have been considered and discarded.
Local extremely metal-poor (XMP) galaxies are of particular astrophysical interest since they allow us to look into physical processes characteristic of the early Universe, from the assembly of galaxy disks to the formation of stars in conditions of low metallicity. Given the luminosity-metallicity relationship, all galaxies fainter than Mr < -13 are expected to be XMPs. Therefore, XMPs should be common in galaxy surveys. However, they are not, because several observational biases hamper their detection. This work compares the number of faint XMPs in the SDSS-DR7 spectroscopic survey with the expected number, given the known biases and the observed galaxy luminosity function. The faint end of the luminosity function is poorly constrained observationally, but it determines the expected number of XMPs. Surprisingly, the number of observed faint XMPs (around 10) is over-predicted by our calculation, unless the upturn in the faint end of the luminosity function is not present in the model. The lack of an upturn can be naturally understood if most XMPs are central galaxies in their low-mass dark matter halos, which are highly depleted in baryons due to interaction with the cosmic ultraviolet background and to other physical processes. Our result also suggests that the upturn towards low luminosity of the observed galaxy luminosity function is due to satellite galaxies.
Extremely metal-poor (XMP) galaxies are chemically, and possibly dynamically, primordial objects in the local Universe. Our objective is to characterize the HI content of the XMP galaxies as a class, using as a reference the list of 140 known local X MPs compiled by Morales-Luis et al. (2011). We have observed 29 XMPs, which had not been observed before at 21 cm, using the Effelsberg radio telescope. This information was complemented with HI data published in literature for a further 53 XMPs. In addition, optical data from the literature provided morphologies, stellar masses, star-formation rates and metallicities. Effelsberg HI integrated flux densities are between 1 and 15 Jy km/s, while line widths are between 20 and 120 km/s. HI integrated flux densities and line widths from literature are in the range 0.1 - 200 Jy km/s and 15 - 150 km/s, respectively. Of the 10 new Effelsberg detections, two sources show an asymmetric double-horn profile, while the remaining sources show either asymmetric (7 sources) or symmetric (1 source) single-peak 21 cm line profiles. An asymmetry in the HI line profile is systematically accompanied by an asymmetry in the optical morphology. Typically, the g-band stellar mass-to-light ratios are ~0.1, whereas the HI gas mass-to-light ratios may be up to 2 orders of magnitude larger. Moreover, HI gas-to-stellar mass ratios fall typically between 10 and 20, denoting that XMPs are extremely gas-rich. We find an anti-correlation between the HI gas mass-to-light ratio and the luminosity, whereby fainter XMPs are more gas-rich than brighter XMPs, suggesting that brighter sources have converted a larger fraction of their HI gas into stars. The dynamical masses inferred from the HI line widths imply that the stellar mass does not exceed 5% of the dynamical mass, while the ion{H}{i} mass constitutes between 20 and 60% of the dynamical mass. (abridged)
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا