ترغب بنشر مسار تعليمي؟ اضغط هنا

Rotation Measure synthesis study and polarized properties of PSR J1745-2900 at 7 mm

82   0   0.0 ( 0 )
 نشر من قبل Evgeniya Kravchenko V.
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف E. V. Kravchenko




اسأل ChatGPT حول البحث

We present results of interferometric polarization observations of the recently discovered magnetar J1745-2900 in the vicinity of the Galactic center. The observations were made with the Karl G. Jansky Very Large Array (VLA) on 21 February 2014 in the range 40-48 GHz. The full polarization mode and A configuration of the array were used. The average total and linearly polarized flux density of the pulsar amounts to 2.3$pm$0.31 mJy/beam and 1.5$pm$0.2 mJy/beam, respectively. Analysis shows a rotation measure (RM) of (-67$pm$3)x10$^3$ rad/m$^2$, which is in a good agreement with previous measurements at longer wavelengths. These high frequency observations are sensitive to RM values of up to ~2x10$^7$ rad/m$^2$. However, application of the Faraday RM synthesis technique did not reveal other significant RM components in the pulsar emission. This supports an external nature of a single thin Faraday-rotating screen which should be located close to the Galactic center. The Faraday corrected intrinsic electric vector position angle is 16$pm$9 deg East of North, and coincides with the position angle of the pulsars transverse velocity. All measurements of the pulsars RM value to date, including the one presented here, well agree within errors, which points towards a steady nature of the Faraday-rotating medium.



قيم البحث

اقرأ أيضاً

83 - W. M. Yan 2018
We report on single-pulse observations of the Galactic Center magnetar PSR J1745$-$2900 that were made using the Parkes 64-m radio telescope with a central frequency of 3.1 GHz at five observing epochs between 2013 July and August. The shape of the i ntegrated pulse profiles was relatively stable across the five observations, indicating that the pulsar was in a stable state between MJDs 56475 and 56514. This extends the known stable state of this pulsar to 6.8 months. Short term pulse shape variations were also detected. It is shown that this pulsar switches between two emission modes frequently and that the typical duration of each mode is about ten minutes. No giant pulses or subpulse drifting were observed. Apparent nulls in the pulse emission were detected on MJD 56500. Although there are many differences between the radio emission of magnetars and normal radio pulsars, they also share some properties. The detection of mode changing and pulse nulling in PSR J1745$-$2900 suggests that the basic radio emission process for magnetars and normal pulsars is the same.
Faraday Rotation Measure (RM) Synthesis, as a method for analyzing multi-channel observations of polarized radio emission to investigate galactic magnetic fields structures, requires the definition of complex polarized intensity in the range of the n egative lambda square. We introduce a simple method for continuation of the observed complex polarized intensity into this domain using symmetry arguments. The method is suggested in context of magnetic field recognition in galactic disks where the magnetic field is supposed to have a maximum in the equatorial plane. The method is quite simple when applied to a single Faraday-rotating structure on the line of sight. Recognition of several structures on the same line of sight requires a more sophisticated technique. We also introduce a wavelet-based algorithm which allows us to consider a set of isolated structures. The method essentially improves the possibilities for reconstruction of complicated Faraday structures using the capabilities of modern radio telescopes.
We apply novel, recently developed plasma ray-tracing techniques to model the propagation of radio photons produced by axion dark matter in neutron star magnetospheres and combine this with both archival and new data for the galactic centre magnetar PSR J1745-2900. The emission direction to the observer and the magnetic orientation are not constrained for this object leading to parametric uncertainty. Our analysis reveals that ray-tracing greatly reduces the signal sensitivity to this uncertainty, contrary to previous calculations where there was no emission at all in some directions. Based on a Goldreich-Julian model for the magnetosphere and a Navarro-Frank-White model for axion density in the galactic centre, we obtain the most robust limits on the axion-photon coupling, to date. These are comparable to those from the CAST solar axion experiment in the mass range $sim 4.2-60,mu{rm eV}$. If the dark matter density is larger, as might predicted by a spike model, the limits could be much stronger. The dark matter density in the region of the galactic centre is now the biggest uncertainty in these calculations.
We report on high angular resolution polarimetric observations of the nearby radio galaxy M87 using the Very Long Baseline Array at 24 GHz ($lambda=$1.3 cm) and 43 GHz ($lambda=$7 mm) in 2017-2018. New images of the linear polarization substructure i n the nuclear region are presented, characterized by a two-component pattern of polarized intensity and smooth rotation of the polarization plane around the 43 GHz core. From a comparison with an analogous dataset from 2007, we find that this global polarization pattern remains stable on a time interval of 11 yr, while showing smaller month-scale variability. We discuss the possible Faraday rotation toward the M87 nucleus at centimeter to millimeter wavelengths. These results can be interpreted in a scenario where the observed polarimetric pattern is associated with the magnetic structure in the confining magnetohydrodynamic wind, which also serves as the source of the observed Faraday rotation.
Polarised radio emission from PSR J1745-2900 has already been used to investigate the strength of the magnetic field in the Galactic Centre, close to Sagittarius A*. Here we report how persistent radio emission from this magnetar, for over four years since its discovery, has revealed large changes in the observed Faraday rotation measure, by up to 3500 rad m$^{-2}$ (a five per cent fractional change). From simultaneous analysis of the dispersion measure, we determine that these fluctuations are dominated by variations in the projected magnetic field, rather than the integrated free electron density, along the changing line of sight to the rapidly moving magnetar. From a structure function analysis of rotation measure variations, and a recent epoch of rapid change of rotation measure, we determine a minimum scale of magnetic fluctuations of size ~ 2 au at the Galactic Centre distance, inferring PSR J1745-2900 is just ~ 0.1 pc behind an additional scattering screen.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا