ترغب بنشر مسار تعليمي؟ اضغط هنا

Nuclear binding near a quantum phase transition

355   0   0.0 ( 0 )
 نشر من قبل Dean Lee J
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

How do protons and neutrons bind to form nuclei? This is the central question of ab initio nuclear structure theory. While the answer may seem as simple as the fact that nuclear forces are attractive, the full story is more complex and interesting. In this work we present numerical evidence from ab initio lattice simulations showing that nature is near a quantum phase transition, a zero-temperature transition driven by quantum fluctuations. Using lattice effective field theory, we perform Monte Carlo simulations for systems with up to twenty nucleons. For even and equal numbers of protons and neutrons, we discover a first-order transition at zero temperature from a Bose-condensed gas of alpha particles (4He nuclei) to a nuclear liquid. Whether one has an alpha-particle gas or nuclear liquid is determined by the strength of the alpha-alpha interactions, and we show that the alpha-alpha interactions depend on the strength and locality of the nucleon-nucleon interactions. This insight should be useful in improving calculations of nuclear structure and important astrophysical reactions involving alpha capture on nuclei. Our findings also provide a tool to probe the structure of alpha cluster states such as the Hoyle state responsible for the production of carbon in red giant stars and point to a connection between nuclear states and the universal physics of bosons at large scattering length.



قيم البحث

اقرأ أيضاً

95 - J.-P. Ebran , M. Girod , E. Khan 2019
When the density of a nuclear system is decreased, homogeneous states undergo the so-called Mott transition towards clusterised states, e.g. alpha clustering, both in nuclei and in nuclear matter. Here we investigate such a quantum phase transition ( QPT) by using microscopic energy density functional (EDF) calculations both with the relativistic and the Gogny approaches on the diluted $^{16}$O nucleus. The evolution of the corresponding single-particle spectrum under dilution is studied, and a Mott-like transition is predicted at about 1/3 of the saturation density. Complementary approaches are used in order to understand this QPT. A study of spatial localisation properties as a function of the density allows to derive a value of the Mott density in agreement with the one obtained by fully microscopic calculations in $^{16}$O and in nuclear matter. Moreover a study of the spontaneous symmetry breaking of the rotational group in $^{16}$O, down to the discrete tetrahedral one, provides further insight on the features displayed by the single-particle spectrum obtained within the EDF approach.The content of the tetrahedrally deformed A-nucleon product state in terms of spherical particle-hole configurations is investigated. Finally a study of quartet condensation and the corresponding macroscopic QPT is undertaken in infinite matter.
Recent ab initio lattice studies have found that the interactions between alpha particles (4He nuclei) are sensitive to seemingly minor details of the nucleon-nucleon force such as interaction locality. In order to uncover the essential physics of th is puzzling phenomenon without unnecessary complications, we study a simple model involving two-component fermions in one spatial dimension. We probe the interaction between two bound dimers for several different particle-particle interactions and measure an effective potential between the dimers using external point potentials which act as numerical tweezers. We find that the strength and range of the local part of the particle-particle interactions play a dominant role in shaping the interactions between the dimers and can even determine the overall sign of the effective potential.
181 - A. Lavagno , D. Pigato 2013
We study an effective relativistic mean-field model of nuclear matter with arbitrary proton fraction at finite temperature in the framework of nonextensive statistical mechanics, characterized by power-law quantum distributions. We investigate the pr esence of thermodynamic instability in a warm and asymmetric nuclear medium and study the consequent nuclear liquid-gas phase transition by requiring the Gibbs conditions on the global conservation of baryon number and electric charge fraction. We show that nonextensive statistical effects play a crucial role in the equation of state and in the formation of mixed phase also for small deviations from the standard Boltzmann-Gibbs statistics.
303 - A. Bonasera , Z. Chen , R. Wada 2008
In their ground states, atomic nuclei are quantum Fermi liquids. At finite temperatures and low densities, these nuclei may undergo a phase change similar to, but substantially different from, a classical liquid gas phase transition. As in the classi cal case, temperature is the control parameter while density and pressure are the conjugate variables. At variance with the classical case, in the nucleus the difference between the proton and neutron concentrations acts as an additional order parameter, for which the symmetry potential is the conjugate variable. Different ratios of the neutron to proton concentrations lead to different critical points for the phase transition. This is analogous to the phase transitions occurring in $^{4}$He-$^{3}$He liquid mixtures. We present experimental results which reveal the N/Z dependence of the phase transition and discuss possible implications of these observations in terms of the Landau Free Energy description of critical phenomena.
We study the problem of an impurity in fully polarized (spin-up) low density neutron matter with the help of an accurate quantum Monte Carlo method in conjunction with a realistic nucleon-nucleon interaction derived from chiral effective field theory at next-to-next-to-leading-order. Our calculations show that the behavior of the proton spin-down impurity is very similar to that of a polaron in a fully polarized unitary Fermi gas. We show that our results can be used to put tight constraints on the time-odd parts of the energy density functional, independent of the time-even parts, in the density regime relevant to neutron-rich nuclei and compact astrophysical objects such as neutron stars and supernovae.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا