ﻻ يوجد ملخص باللغة العربية
To explore the origin of the unusual non-bulk superconductivity with a Tc up to 49 K reported in the rare-earth-doped CaFe2As2 , the chemical composition, magnetization, specific heat, resistivity, and annealing effect are systematically investigated on nominal (Ca1-xRx)Fe2As2 single crystals with different xs and R = La, Ce, Pr, and Nd. All display a doping-independent Tc once superconductivity is induced, a doping-dependent low field superconducting volume fraction f, and a large magnetic anisotropy {eta} in the superconducting state, suggesting a rather inhomogeneous superconducting state in an otherwise microscale-homogenous superconductor. The wavelength dispersive spectroscopy and specific heat show the presence of defects which are closely related to f, regardless of the R involved. The magnetism further reveals that the defects are mainly superparamagnetic clusters for R = Ce, Pr, and Nd with strong intercluster interactions, implying that defects are locally self-organized. Annealing at 500 {deg}C, without varying the doping level x, suppresses f profoundly but not the Tc. The above observations provide evidence for the crucial role of defects in the occurrence of the unusually high Tc ~ 49 K in (Ca1-xRx)Fe2As2 and are consistent with the interface-enhanced superconductivity recently proposed.
A new hight Tc Fe-based compound system, AFe2As2 with A = K, Cs, K/Sr and Cs/Sr has been found. Through electron-doping, Tc of the A = K and Cs compounds rises to ~37 K, and finally enter a spin-density-wave state (SDW) through further electron dopin
Single crystalline CaFe2As2 and (Ca1-xNax)Fe2As2 polycrystals (0 < x < 0.66) are synthesized and characterized using structural, magnetic, electronic transport, and heat capacity measurements. These measurements show that the structural/magnetic phas
Following the discovery of superconductivity in an iron-based arsenide LaO1-xFxFeAs with a superconducting transition temperature (Tc) of 26 K[1], Tc was pushed up surprisingly to above 40 K by either applying pressure[2] or replacing La with Sm[3],
Far and mid infrared optical pulses have been shown to induce non-equilibrium unconventional orders in complex materials, including photo-induced ferroelectricity in quantum paraelectrics, magnetic polarization in antiferromagnets and transient super
Polycrystalline sample FeSe was synthesized by a self-flux solution method which shows a zero resistance temperature up to 10.9 K and a Tconset (90% rhon, rhon: normal state resistivity) up to 13.3 K. The decrease of superconducting transition temper