ﻻ يوجد ملخص باللغة العربية
This document was prepared by the community that is active in Italy, within INFN (Istituto Nazionale di Fisica Nucleare), in the field of ultra-relativistic heavy-ion collisions. The experimental study of the phase diagram of strongly-interacting matter and of the Quark-Gluon Plasma (QGP) deconfined state will proceed, in the next 10-15 years, along two directions: the high-energy regime at RHIC and at the LHC, and the low-energy regime at FAIR, NICA, SPS and RHIC. The Italian community is strongly involved in the present and future programme of the ALICE experiment, the upgrade of which will open, in the 2020s, a new phase of high-precision characterisation of the QGP properties at the LHC. As a complement of this main activity, there is a growing interest in a possible future experiment at the SPS, which would target the search for the onset of deconfinement using dimuon measurements. On a longer timescale, the community looks with interest at the ongoing studies and discussions on a possible fixed-target programme using the LHC ion beams and on the Future Circular Collider.
Isobaric $^{96}_{44}$Ru+$^{96}_{44}$Ru and $^{96}_{40}$Zr+$^{96}_{40}$Zr collisions at $sqrt{s_{_{NN}}}=200$ GeV have been conducted at the Relativistic Heavy Ion Collider to circumvent the large flow-induced background in searching for the chiral ma
Relativistic models can be successfully applied to the description of compact star properties in nuclear astrophysics as well as to nuclear matter and finite nuclei properties, these studies taking place at low and moderate temperatures. Nevertheless
We outline the opportunities for ultra-relativistic heavy-ion physics which are offered by a next generation and multi-purpose fixed-target experiment exploiting the proton and ion LHC beams extracted by a bent crystal.
A systematic analysis of correlations between different orders of $p_T$-differential flow is presented, including mode coupling effects in flow vectors, correlations between flow angles (a.k.a. event-plane correlations), and correlations between flow
A QCD phase transition may reflect in a inhomogeneous decoupling surface of hadrons produced in relativistic heavy-ion collisions. We show that due to the non-linear dependence of the particle densities on the temperature and baryon-chemical potentia