ترغب بنشر مسار تعليمي؟ اضغط هنا

XY Antiferromagnetic Ground State in the Effective S=1/2 Pyrochlore Yb2Ge2O7

374   0   0.0 ( 0 )
 نشر من قبل Alannah Hallas
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report neutron scattering and muon spin relaxation measurements (muSR) on the pyrochlore antiferromagnet Yb2Ge2O7. Inelastic neutron scattering was used to probe the transitions between crystal electric field levels, allowing us to determine the eigenvalues and eigenvectors appropriate to the J=7/2 Yb3+ ion in this environment. The crystal electric field ground state doublet in Yb2Ge2O7 corresponds primarily to m_J = +/- 1/2 with local XY anisotropy, consistent with an S_eff = 1/2 description for the Yb moments. muSR measurements reveal the presence of an ordering transition at T_N = 0.57 K with persistent weak dynamics in the ordered state. Finally, we present neutron diffraction measurements that reveal a clear phase transition to the k = (000) Gamma_5 ground state with an ordered magnetic moment of 0.3(1) mu_B per Yb ion. We compare and contrast this phenomenology with the low temperature behavior of Yb2Ti2O7 and Er2Ti2O7, the prototypical S_eff = 1/2 XY pyrochlore magnets.



قيم البحث

اقرأ أيضاً

159 - Z. L. Dun , X. Li , R. S. Freitas 2015
Elastic neutron scattering, ac susceptibility, and specific heat experiments on the pyrochlores Er$_{2}$Ge$_{2}$O$_{7}$ and Yb$_{2}$Ge$_{2}$O$_{7}$ show that both systems are antiferromagnetically ordered in the $Gamma_5$ manifold. The ground state i s a $psi_{3}$ phase for the Er sample and a $psi_{2}$ or $psi_{3}$ phase for the Yb sample, which suggests Order by Disorder(ObD) physics. Furthermore, we unify the various magnetic ground states of all known R$_{2}$B$_{2}$O$_{7}$ (R = Er, Yb, B = Sn, Ti, Ge) compounds through the enlarged XY type exchange interaction $J_{pm}$ under chemical pressure. The mechanism for this evolution is discussed in terms of the phase diagram proposed in the theoretical study [Wong et al., Phys. Rev. B 88, 144402, (2013)].
Motivated by recent experimental and theoretical progress on the Er2Ti2O7 pyrochlore XY antiferromagnet, we study the problem of quantum order-by-disorder in pyrochlore XY systems. We consider the most general nearest-neighbor pseudo spin-1/2 Hamilto nian for such a system characterized by anisotropic spin-spin couplings J_e = [J_pm, J_{pmpm}, J_{zpm}, J_{zz}] and construct zero-temperature phase diagrams. Combining symmetry arguments and spin-wave calculations, we show that the ground state phase boundaries between the two candidate ground states of the Gamma_5 irreducible representation, the psi_2 and psi_3 (basis) states, are rather accurately determined by a cubic equation in J_{pm}J_{pmpm})/J_{zpm}^2. Depending on the value of J_{zz}, there can be one or three phase boundaries that separate alternating regions of psi_2 and psi_3 states. In particular, we find for sufficiently small J_{zz}/J_{pm} a narrow psi_2 sliver sandwiched between two psi_3 regions in the J_{pmpm}/J_pm vs J_{zpm}/J_pm phase diagram. Our results further illustrate the very large potential sensitivity of the ground state of XY pyrochlore systems to minute changes in their spin Hamiltonian. Using the experimentally determined J_3 and g-tensor values for Er2Ti2O7, we show that the heretofore neglected long-range 1/r^3 magnetostatic dipole-dipole interactions do not change the conclusion that Er2Ti2O7 has a psi_2 ground state induced via a quantum order-by-disorder mechanism. We propose that the CdDy2Se4 chalcogenide spinel, in which the Dy^{3+} ions form a pyrochlore lattice and may be XY-like, could prove interesting to investigate.
We report a single-crystal study on the magnetism of the rare-earth compound PrTiNbO$_6$ that experimentally realizes the zigzag pseudospin-$frac{1}{2}$ quantum antiferromagnetic chain model. Random crystal electric field caused by the site mixing be tween non-magnetic Ti$^{4+}$ and Nb$^{5+}$, results in the non-Kramers ground state quasi-doublet of Pr$^{3+}$ with the effective pseudospin-$frac{1}{2}$ Ising moment. Despite the antiferromagnetic intersite coupling of about 4 K, no magnetic freezing is detected down to 0.1 K, whilst the system approaches its ground state with almost zero residual spin entropy. At low temperatures, a sizable gap of about 1 K is observed in zero field. We ascribe this gap to off-diagonal anisotropy terms in the pseudospin Hamiltonian, and argue that rare-earth oxides open an interesting venue for studying magnetism of quantum spin chains.
129 - Uzi Hizi 2009
In the pyrochlore lattice Heisenberg antiferromagnet, for large spin length $S$, the massive classical ground state degeneracy is partly lifted by the zero-point energy of quantum fluctuations at harmonic order in spin-waves. However, there remains a n infinite manifold of degenerate collinear ground states, related by a gaugelike symmetry. We have extended the spin-wave calculation to quartic order, assuming a Gaussian variational wavefunction (equivalent to Hartree-Fock approximation). Quartic calculations emph{do} break the harmonic-order degeneracy of periodic ground states. The form of the effective Hamiltonian describing this splitting, which depends on loops, was fitted numerically and also rationalized analytically. We find a family of states that are still almost degenerate, being split by the term from loops of length 26. We also calculated the anharmonic terms for the checkerboard lattice, and discuss why it (as well as the kagome lattice) behave differently than the pyrochlore at anharmonic orders.
NpCoGe, the neptunium analogue of the ferromagnetic superconductor UCoGe, has been investigated by dc-magnetization, ac-susceptibility, specific heat, electrical resistivity, Hall effect, 237Np Moessbauer spectroscopy and LSDA calculations. NpCoGe ex hibits an antiferromagnetic ground state with a Neel temperature TN = 13 K and an average ordered magnetic moment <mNp> = 0.80 mB. The magnetic phase diagram has been determined and shows that the antiferromagnetic structure is destroyed by the application of a magnetic field (around 3 T). The value of the isomer shift suggests a Np3+ charge state (configuration 5f4). A high Sommerfeld coefficient value for NpCoGe (170 mJ mol-1K-2) is inferred from specific heat. LSDA calculations indicate strong magnetic anisotropy and easy magnetization along the c-axis. Moessbauer data and calculated exchange interactions support the possible occurrence of an elliptical spin spiral structure in NpCoGe. The comparison with NpRhGe and uranium analogues suggests the leading role of 5f-d hybridization, the rather delocalized character of 5f electrons in NpCoGe and the possible proximity of NpRuGe or NpFeGe to a magnetic quantum critical point.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا