ﻻ يوجد ملخص باللغة العربية
We calculate the Drude weight in the superfluid (SF) and the supersolid (SS) phases of hard core boson (HCB) model using stochastic series expansion (SSE). We demonstrate from our numerical calculations that the normal phase of HCBs in two dimensions can be an ideal conductor with dissipationless transport. In two dimensions, when the ground state is a SF, the superfluid stiffness drops to zero with a Kosterlitz-Thouless type transition at $T_{KT}$. The Drude weight, though is equal to the stiffness below $T_{KT}$, surprisingly stays finite even for temperatures above $T_{KT}$ indicating the non-dissipative transport in the normal state of this system. In contrast to this in a three dimensional SF phase, where the superfluid stiffness goes to zero continuously with a second order phase transition at $T_c$, Drude weight also goes to zero at $T_c$ as expected. We also calculated the Drude weight in a 2D SS phase, where the charge density wave (CDW) order coexists with superfluidity. For the SS phase we studied, superfluidity is lost via Kosterlitz-Thouless transition at $T_{KT}$ and the transition temperature for the CDW order is larger than $T_{KT}$. In striped SS phase where the CDW order breaks the rotational symmetry of the lattice, for $T > T_{KT}$, the system behaves like an ideal conductor along one of the lattice direction while along the other direction it behaves like an insulator. In contrast to this, in star-SS phase, Drude weight along both the lattice directions goes to zero along with the superfluid stiffness and for $T > T_{KT}$ we have a finite temperature phase of a CDW insulator.
Integrable models such as the spin-1/2 Heisenberg chain, the Lieb-Liniger or the one-dimensional Hubbard model are known to avoid thermalization, which was also demonstrated in several quantum-quench experiments. Another dramatic consequence of integ
Long-range order in quantum many-body systems is usually associated with equilibrium situations. Here, we experimentally investigate the quasicondensation of strongly-interacting bosons at finite momenta in a far-from-equilibrium case. We prepare an
We present a scheme of analytical calculations determining the critical temperature and the number of condensed atoms of ideal gas Bose-Einstein condensation in external potentials with 1D, 2D or 3D periodicity. In particular we show that the width o
Motivated by the recent experiments on Bose-Einstein mixtures with tunable interactions we study repulsive weakly interacting Bose mixtures at finite temperature. We obtain phase diagrams using Hartree-Fock theory which are directly applicable to exp
We investigate the strongly interacting hard-core anyon gases in a one dimensional harmonic potential at finite temperature by extending thermal Bose-Fermi mapping method to thermal anyon-ferimon mapping method. With thermal anyon-fermion mapping met