ترغب بنشر مسار تعليمي؟ اضغط هنا

Borophane: Stable Two-dimensional Anisotropic Dirac Material with Ultrahigh Fermi Velocity

93   0   0.0 ( 0 )
 نشر من قبل Liangzhi Kou Dr.
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent synthesis of monolayer borophene (triangle boron monolayer) on the substrate opens the era of boron nanosheet (Science, 350, 1513, $mathbf{2015}$), but the structural stability and novel physical properties are still open issues. Here we demonstrated borophene can be stabilized with fully surface hydrogenation, called as borophane, from first-principles calculations. Most interesting, it shows that borophane has direction-dependent Dirac cones, which are mainly contributed by in-plane emph{p$_{x}$} and emph{p$_{y}$} orbitals of boron atoms. The Dirac fermions possess an ultrahigh Fermi velocity up to 3.0$times$10$^{6}$ m/s, 4 times higher than that of graphene. The Youngs modules are calculated to be 129 and 200 GPa$cdot$nm along two different directions, which is comparable with steel. The ultrahigh Fermi velocity and high mechanical feature render borophane ideal for nanoelectronics applications.

قيم البحث

اقرأ أيضاً

Searching for two-dimensional (2D) organic Dirac materials, which have more adaptable practical applications in comparing with inorganic ones, is of great significance and has been ongoing. However, only two kinds of these materials with low Fermi ve locity have been discovered so far. Herein, we report the design of an organic monolayer with C$_4$N$_3$H stoichiometry which possesses fascinating structure and good stability in its free-standing state. More importantly, we demonstrate that this monolayer is a semimetal with anisotropic Dirac cones and very high Fermi velocity. This Fermi velocity is roughly one order of magnitude larger than that in 2D organic Dirac materials ever reported, and is comparable to that in graphene. The Dirac states in this monolayer arise from the extended $pi$-electron conjugation system formed by the overlapping 2emph{p}$_z$ orbitals of carbon and nitrogen atoms. Our finding opens a door for searching more 2D organic Dirac materials with high Fermi velocity.
188 - Botao Fu , Chao He , Da-Shuai Ma 2021
We propose a new concept of two-dimensional (2D) Dirac semiconductor which is characterized by the emergence of fourfold degenerate band crossings near the band edge and provide a generic approach to realize this novel semiconductor in the community of material science. Based on the first-principle calculations and symmetry analysis, we discover recently synthesised triple-layer (TL)-BiOS2 is such Dirac semiconductor that features Dirac cone at X/Y point, protected by nonsymmorphic symmetry. Due to sandwich-like structure, each Dirac fermion in TL-BiOS2 can be regarded as a combination of two Weyl fermions with opposite chiralities, degenerate in momentum-energy space but separated in real space. Such Dirac semiconductor carries layer-dependent helical spin textures that never been reported before. Moreover, novel topological phase transitions are flexibly achieved in TL-BiOS2: (i) an vertical electric field can drive it into Weyl semiconductor with switchable spin polarization direction, (ii) an extensive strain is able to generate ferroelectric polarization and actuate it into Weyl nodal ring around X point and into another type of four-fold degenerate point at Y point. Our work extends the Dirac fermion into semiconductor systems and provides a promising avenue to integrate spintronics and optoelectronics in topological materials.
Two-dimensional (2D) materials with Dirac cones have been intrigued by many unique properties, i.e., the effective masses of carriers close to zero and Fermi velocity of ultrahigh, which yields a great possibility in high-performance electronic devic es. In this work, using first-principles calculations, we have predicted a new Dirac cone material of silicon carbide with the new stoichiometries, named g-SiC6 monolayer, which is composed of sp2 hybridized with a graphene-like structure. The detailed calculations have revealed that g-SiC6 has outstanding dynamical, thermal, and mechanical stabilities, and the mechanical and electronic properties are still isotropic. Of great interest is that the Fermi velocity of g-SiC6 monolayer is the highest in silicon carbide Dirac materials until now. The Dirac cone of the g-SiC6 is controllable by an in-plane uniaxial strain and shear strain, which is promised to realize a direct application in electronics and optoelectronics. Moreover, we found that new stoichiometries AB6 (A, B = C, Si, and Ge) compounds with the similar SiC6 monolayer structure are both dynamics stable and possess Dirac cones, and their Fermi velocity was also calculated in this paper. Given the outstanding properties of those new types of silicon carbide monolayer, which is a promising 2D material for further exploring the potential applications.
By means of extensive ab initio calculations, a new two-dimensional (2D) atomic material tin selenide monolayer (coined as tinselenidene) is predicted to be a semiconductor with an indirect gap (1.45 eV) and a high hole mobility (of order 10000 cm2V- 1S-1), and will bear an indirect-direct gap transition under a rather low strain (<0.5 GPa). Tinselenidene has a very small Youngs modulus (20-40 GPa) and an ultralow lattice thermal conductivity (<3 Wm-1K-1 at 300 K), making it probably the most flexible and most heat-insulating material in known 2D atomic materials. In addition, tinseleniden has a large negative Poissons ratio of -0.17, thus could act as a 2D auxetic material. With these intriguing properties, tinselenidene could have wide potential applications in thermoelectrics, nanomechanics and optoelectronics.
Using evolutionary algorithm for crystal structure prediction, we present a new stable two-dimensional (2D) carbon allotrope composed of polymerized as-indacenes (PAI) in a zigzag pattern, namely PAI-graphene whose energy is lower than most of the re ported 2D allotropes of graphene. Crucially, the crystal structure realizes a nonsymmorphic layer group that enforces a nontrivial global topology of the band structure with two Dirac cones lying perfectly at the Fermi level. The absence of electron/hole pockets makes PAI-graphene a pristine crystalline topological semimetal having anisotropic Fermi velocities with a high value of $7.0 times 10^{5}$ m/s. We show that while the semimetallic property of the allotrope is robust against the application of strain, the positions of the Dirac cone and the Fermi velocities can be modified significantly with strain. Moreover, by combining strain along both the x- and y-directions, two band
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا