ﻻ يوجد ملخص باللغة العربية
We present the first experimental constraints on the spin-dependent WIMP-nucleon elastic cross sections from LUX data acquired in 2013. LUX is a dual-phase xenon time projection chamber operating at the Sanford Underground Research Facility (Lead, South Dakota), which is designed to observe the recoil signature of galactic WIMPs scattering from xenon nuclei. A profile likelihood ratio analysis of $1.4~times~10^{4}~text{kg}cdot~text{days}$ of fiducial exposure allows 90% CL upper limits to be set on the WIMP-neutron (WIMP-proton) cross section of $sigma_n~=~9.4~times~10^{-41}~text{cm}^2$ ($sigma_p~=~2.9~times~10^{-39}~text{cm}^2$) at 33 GeV/c$^2$. The spin-dependent WIMP-neutron limit is the most sensitive constraint to date.
We present constraints on weakly interacting massive particles (WIMP)-nucleus scattering from the 2013 data of the Large Underground Xenon dark matter experiment, including $1.4times10^{4};mathrm{kg; day}$ of search exposure. This new analysis incorp
We report the first results of a light weakly interacting massive particles (WIMPs) search from the CDEX-10 experiment with a 10 kg germanium detector array immersed in liquid nitrogen at the China Jinping Underground Laboratory with a physics data s
New constraints are presented on the spin-dependent WIMP-nucleon interaction from the PandaX-II experiment, using a data set corresponding to a total exposure of 3.3$times10^4$ kg-days. Assuming a standard axial-vector spin-dependent WIMP interaction
We report results on the searches of weakly interacting massive particles (WIMPs) with sub-GeV masses ($m_{chi}$) via WIMP-nucleus spin-independent scattering with Migdal effect incorporated. Analysis on time-integrated (TI) and annual modulation (AM
We present the results of the three-month above-ground commissioning run of the Large Underground Xenon (LUX) experiment at the Sanford Underground Research Facility located in Lead, South Dakota, USA. LUX is a 370 kg liquid xenon detector that will