ترغب بنشر مسار تعليمي؟ اضغط هنا

Conformal restriction: The trichordal case

91   0   0.0 ( 0 )
 نشر من قبل Wei Qian
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Wei Qian




اسأل ChatGPT حول البحث

The study of conformal restriction properties in two-dimensions has been initiated by Lawler, Schramm and Werner who focused on the natural and important chordal case: They characterized and constructed all random subsets of a given simply connected domain that join two marked boundary points and that satisfy the additional restriction property. The radial case (sets joining an inside point to a boundary point) has then been investigated by Wu. In the present paper, we study the third natural instance of such restriction properties, namely the trichordal case, where one looks at random sets that join three marked boundary points. This case involves somewhat more technicalities than the other two, as the construction of this family of random sets relies on special variants of SLE$_{8/3}$ processes with a drift term in the driving function that involves hypergeometric functions. It turns out that such a random set can not be a simple curve simultaneously in the neighborhood of all three marked points, and that the exponent $alpha = 20/27$ shows up in the description of the law of the skinniest possible symmetric random set with this trichordal restriction property.



قيم البحث

اقرأ أيضاً

In the first part of this article, we proved a local version of the circular law up to the finest scale $N^{-1/2+ e}$ for non-Hermitian random matrices at any point $z in C$ with $||z| - 1| > c $ for any $c>0$ independent of the size of the matrix. U nder the main assumption that the first three moments of the matrix elements match those of a standard Gaussian random variable after proper rescaling, we extend this result to include the edge case $ |z|-1=oo(1)$. Without the vanishing third moment assumption, we prove that the circular law is valid near the spectral edge $ |z|-1=oo(1)$ up to scale $N^{-1/4+ e}$.
This is the first of two papers devoted to the proof of conformal invariance of the critical double random current and the XOR-Ising models on the square lattice. More precisely, we show the convergence of loop ensembles obtained by taking the cluste r boundaries in the sum of two independent currents with free and wired boundary conditions, and in the XOR-Ising models with free and plus/plus boundary conditions. Therefore we establish Wilsons conjecture on the XOR-Ising model. The strategy, which to the best of our knowledge is different from previous proofs of conformal invariance, is based on the characterization of the scaling limit of these loop ensembles as certain local sets of the Gaussian Free Field. In this paper, we identify uniquely the possible subsequential limits of the loop ensembles. Combined with the second paper, this completes the proof of conformal invariance.
This is the second of two papers devoted to the proof of conformal invariance of the critical double random current and the XOR-Ising model on the square lattice. More precisely, we show the convergence of loop ensembles obtained by taking the cluste r boundaries in the sum of two independent currents both with free or wired boundary conditions, and in the XOR-Ising models with free and plus/plus boundary conditions. Therefore we establish Wilsons conjecture on the XOR-Ising model. The strategy, which to the best of our knowledge is different from previous proofs of conformal invariance, is based on the characterization of the scaling limit of these loop ensembles as certain local sets of the continuum Gaussian Free Field. In this paper, we derive crossing properties of the discrete models required to prove this characterization.
We introduce a fundamental restriction on the strain energy function and stress tensor for initially stressed elastic solids. The restriction applies to strain energy functions $W$ that are explicit functions of the elastic deformation gradient $math bf{F}$ and initial stress $boldsymbol tau$, i.e. $W:= W(mathbf F, boldsymbol tau)$. The restriction is a consequence of energy conservation and ensures that the predicted stress and strain energy do not depend upon an arbitrary choice of reference configuration. We call this restriction: initial stress reference independence (ISRI). It transpires that almost all strain energy functions found in the literature do not satisfy ISRI, and may therefore lead to unphysical behaviour, which we illustrate via a simple example. To remedy this shortcoming we derive three strain energy functions that do satisfy the restriction. We also show that using initial strain (often from a virtual configuration) to model initial stress leads to strain energy functions that automatically satisfy ISRI. Finally, we reach the following important result: ISRI reduces the number of unknowns of the linear stress tensor of initially stressed solids. This new way of reducing the linear stress may open new pathways for the non-destructive determination of initial stresses via ultrasonic experiments, among others.
374 - R. Jackiw , S.-Y. Pi 2012
Extending previous work on 2 -- and 3 -- point functions, we study the 4 -- point function and its conformal block structure in conformal quantum mechanics CFT$_1$, which realizes the SO(2,1) symmetry group. Conformal covariance is preserved even tho ugh the operators with which we work need not be primary and the states are not conformally invariant. We find that only one conformal block contributes to the four-point function. We describe some further properties of the states that we use and we construct dynamical evolution generated by the compact generator of SO(2.1).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا