ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing the sparse tails of redshift distributions with Voronoi tessellations

435   0   0.0 ( 0 )
 نشر من قبل Benjamin Granett
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce an algorithm to estimate the redshift distribution of a sample of galaxies selected photometrically given a subsample with measured spectroscopic redshifts. The approach uses a non-parametric Voronoi tessellation density estimator to interpolate the galaxy distribution in the redshift and photometric color space. We test the method on a mock dataset with a known color-redshift distribution. We find that the Voronoi tessellation estimator performs well at reconstructing the tails of the redshift distribution of individual galaxies and gives unbiased estimates of the first and second moments. The source code is publicly available at http://bitbucket.org/bengranett/tailz.



قيم البحث

اقرأ أيضاً

Determining the masses of new physics particles appearing in decay chains is an important and longstanding problem in high energy phenomenology. Recently it has been shown that these mass measurements can be improved by utilizing the boundary of the allowed region in the fully differentiable phase space in its full dimensionality. Here we show that the practical challenge of identifying this boundary can be solved using techniques based on the geometric properties of the cells resulting from Voronoi tessellations of the relevant data. The robust detection of such phase space boundaries in the data could also be used to corroborate a new physics discovery based on a cut-and-count analysis.
Survey observations of the three-dimensional locations of galaxies are a powerful approach to measure the distribution of matter in the universe, which can be used to learn about the nature of dark energy, physics of inflation, neutrino masses, etc. A competitive survey, however, requires a large volume (e.g., Vsurvey is roughly 10 Gpc3) to be covered, and thus tends to be expensive. A sparse sampling method offers a more affordable solution to this problem: within a survey footprint covering a given survey volume, Vsurvey, we observe only a fraction of the volume. The distribution of observed regions should be chosen such that their separation is smaller than the length scale corresponding to the wavenumber of interest. Then one can recover the power spectrum of galaxies with precision expected for a survey covering a volume of Vsurvey (rather than the volume of the sum of observed regions) with the number density of galaxies given by the total number of observed galaxies divided by Vsurvey (rather than the number density of galaxies within an observed region). We find that regularly-spaced sampling yields an unbiased power spectrum with no window function effect, and deviations from regularly-spaced sampling, which are unavoidable in realistic surveys, introduce calculable window function effects and increase the uncertainties of the recovered power spectrum. While we discuss the sparse sampling method within the context of the forthcoming Hobby-Eberly Telescope Dark Energy Experiment, the method is general and can be applied to other galaxy surveys.
137 - Pierre Calka 2012
In this paper, we construct a new family of random series defined on $R^D$, indexed by one scaling parameter and two Hurst-like exponents. The model is close to Takagi-Knopp functions, save for the fact that the underlying partitions of $R^D$ are not the usual dyadic meshes but random Voronoi tessellations generated by Poisson point processes. This approach leads us to a continuous function whose random graph is shown to be fractal with explicit and equal box and Hausdorff dimensions. The proof of this main result is based on several new distributional properties of the Poisson-Voronoi tessellation on the one hand, an estimate of the oscillations of the function coupled with an application of a Frostman-type lemma on the other hand. Finally, we introduce two related models and provide in particular a box-dimension calculation for a derived deterministic Takagi-Knopp series with hexagonal bases.
155 - Zipeng Ye , Ran Yi , Minjing Yu 2019
Nowadays, big data of digital media (including images, videos and 3D graphical models) are frequently modeled as low-dimensional manifold meshes embedded in a high-dimensional feature space. In this paper, we summarized our recent work on geodesic ce ntroidal Voronoi tessellations(GCVTs), which are intrinsic geometric structures on manifold meshes. We show that GCVT can find a widely range of interesting applications in computer vision and graphics, due to the efficiency of search, location and indexing inherent in these intrinsic geometric structures. Then we present the challenging issues of how to build the combinatorial structures of GCVTs and establish their time and space complexities, including both theoretical and algorithmic results.
119 - Samuel Schmidt 2013
Determining accurate redshift distributions for very large samples of objects has become increasingly important in cosmology. We investigate the impact of extending cross-correlation based redshift distribution recovery methods to include small scale clustering information. The major concern in such work is the ability to disentangle the amplitude of the underlying redshift distribution from the influence of evolving galaxy bias. Using multiple simulations covering a variety of galaxy bias evolution scenarios, we demonstrate reliable redshift recoveries using linear clustering assumptions well into the non-linear regime for redshift distributions of narrow redshift width. Including information from intermediate physical scales balances the increased information available from clustering and the residual bias incurred from relaxing of linear constraints. We discuss how breaking a broad sample into tomographic bins can improve estimates of the redshift distribution, and present a simple bias removal technique using clustering information from the spectroscopic sample alone.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا