ﻻ يوجد ملخص باللغة العربية
The stress-driven motion of dislocations in crystalline solids, and thus the ensuing plastic deformation process, is greatly influenced by the presence or absence of various point-like defects such as precipitates or solute atoms. These defects act as obstacles for dislocation motion and hence affect the mechanical properties of the material. Here we combine molecular dynamics studies with three-dimensional discrete dislocation dynamics simulations in order to model the interaction between different kinds of precipitates and a $frac{1}{2}langle 1 1 1rangle$ ${1 1 0}$ edge dislocation in BCC iron. We have implemented immobile spherical precipitates into the ParaDis discrete dislocation dynamics code, with the dislocations interacting with the precipitates via a Gaussian potential, generating a normal force acting on the dislocation segments. The parameters used in the discrete dislocation dynamics simulations for the precipitate potential, the dislocation mobility, shear modulus and dislocation core energy are obtained from molecular dynamics simulations. We compare the critical stresses needed to unpin the dislocation from the precipitate in molecular dynamics and discrete dislocation dynamics simulations in order to fit the two methods together, and discuss the variety of the relevant pinning/depinning mechanisms.
From their birth in the manufacturing process, materials inherently contain defects that affect the mechanical behavior across multiple length and time-scales, including vacancies, dislocations, voids and cracks. Understanding, modeling, and real-tim
The current interest in compositionally complex alloys including so called high entropy alloys has caused renewed interest in the general problem of solute hardening. It has been suggested that this problem can be addressed by treating the alloy as a
The fundamental interactions between an edge dislocation and a random solid solution are studied by analyzing dislocation line roughness profiles obtained from molecular dynamics simulations of Fe0.70Ni0.11 Cr0.19 over a range of stresses and tempera
We use DFT to compute core structures of $a_0[100](010)$ edge, $a_0[100](011)$ edge, $a_0/2[bar{1}bar{1}1](1bar{1}0)$ edge, and $a_0/2[111](1bar{1}0)$ $71^{circ}$ mixed dislocations in bcc Fe. The calculations use flexible boundary conditions (FBC),
We use three-dimensional discrete dislocation dynamics simulations (DDD) to study the evolution of interfacial dislocation network (IDN) in particle-strengthened alloy systems subjected to constant stress at high temperatures. We have modified the di