ﻻ يوجد ملخص باللغة العربية
Topological insulators interacting with magnetic impurities have been reported to host several unconventional effects. These phenomena are described within the framework of gapping Dirac quasiparticles due to broken time-reversal symmetry. However, the overwhelming majority of studies demonstrate the presence of a finite density of states near the Dirac point even once Topological insulators become magnetic. Here, we map the response of topological states to magnetic impurities at the atomic scale. We demonstrate that magnetic order and gapless states can coexist. We show how this is the result of the delicate balance between two opposite trends, i.e. gap opening and emergence of a Dirac node impurity band, both induced by the magnetic dopants. Our results evidence a more intricate and rich scenario with respect to the once generally assumed, showing how different electronic and magnetic states may be generated and controlled in this fascinating class of materials.
A topological insulator doped with random magnetic impurities is studied. The system is modelled by the Kane-Mele model with a random spin exchange between conduction electrons and magnetic dopants. The dynamical mean field theory for disordered syst
Introducing magnetism into topological insulators breaks time-reversal symmetry, and the magnetic exchange interaction can open a gap in the otherwise gapless topological surface states. This allows various novel topological quantum states to be gene
It has been suggested that the enlarged spin susceptibility in topological insulators, described by Van Vlecks formalism, accounts for the ferromagnetism of bismuth-antimony topological chalcogenides doped with transition metal impurities. In contras
Pursuing topological phases in natural and artificial materials is one of the central topics in modern physical science and engineering. In classical magnetic systems, spin waves (or magnons) and magnetic solitons (such as domain wall, vortex, skyrmi
The combination of magnetism and topology in magnetic topological insulators (MTIs) has led to unprecedented advancements of time reversal symmetry-breaking topological quantum physics in the past decade. Compared with the uniform films, the MTI hete