ترغب بنشر مسار تعليمي؟ اضغط هنا

Dual nature of magnetic dopants and competing trends in topological insulators

108   0   0.0 ( 0 )
 نشر من قبل Paolo Sessi
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Topological insulators interacting with magnetic impurities have been reported to host several unconventional effects. These phenomena are described within the framework of gapping Dirac quasiparticles due to broken time-reversal symmetry. However, the overwhelming majority of studies demonstrate the presence of a finite density of states near the Dirac point even once Topological insulators become magnetic. Here, we map the response of topological states to magnetic impurities at the atomic scale. We demonstrate that magnetic order and gapless states can coexist. We show how this is the result of the delicate balance between two opposite trends, i.e. gap opening and emergence of a Dirac node impurity band, both induced by the magnetic dopants. Our results evidence a more intricate and rich scenario with respect to the once generally assumed, showing how different electronic and magnetic states may be generated and controlled in this fascinating class of materials.

قيم البحث

اقرأ أيضاً

A topological insulator doped with random magnetic impurities is studied. The system is modelled by the Kane-Mele model with a random spin exchange between conduction electrons and magnetic dopants. The dynamical mean field theory for disordered syst ems is used to investigate the electron dynamics. The magnetic long-range order and the topological invariant are calculated within the mean field theory. They reveal a rich phase diagram, where different magnetic long-range orders such as antiferromagnetic or ferromagnetic one can exist in the metallic or insulating phases, depending on electron and magnetic impurity fillings. It is found that insulator only occurs at electron half filling, quarter filling and when electron filling is equal to magnetic impurity filling. However, non-trivial topology is observed only in half-filling antiferromagnetic insulator and quarter-filling ferromagnetic insulator. At electron half filling, the spin Hall conductance is quantized and it is robust against magnetic doping, while at electron quarter filling, magnetic dopants drive the ferromagnetic topological insulator to ferromagnetic metal. The quantum anomalous Hall effect is observed only at electron quarter filling and dense magnetic doping.
178 - Pinyuan Wang , Jun Ge , Jiaheng Li 2020
Introducing magnetism into topological insulators breaks time-reversal symmetry, and the magnetic exchange interaction can open a gap in the otherwise gapless topological surface states. This allows various novel topological quantum states to be gene rated, including the quantum anomalous Hall effect (QAHE) and axion insulator states. Magnetic doping and magnetic proximity are viewed as being useful means of exploring the interaction between topology and magnetism. However, the inhomogeneity of magnetic doping leads to complicated magnetic ordering and small exchange gaps, and consequently the observed QAHE appears only at ultralow temperatures. Therefore, intrinsic magnetic topological insulators are highly desired for increasing the QAHE working temperature and for investigating topological quantum phenomena further. The realization and characterization of such systems are essential for both fundamental physics and potential technical revolutions. This review summarizes recent research progress in intrinsic magnetic topological insulators, focusing mainly on the antiferromagnetic topological insulator MnBi2Te4 and its family of materials.
It has been suggested that the enlarged spin susceptibility in topological insulators, described by Van Vlecks formalism, accounts for the ferromagnetism of bismuth-antimony topological chalcogenides doped with transition metal impurities. In contras t, earlier studies of HgTe and related topological systems pointed out that the interband analog of the Ruderman-Kittel-Kasuya-Yosida interaction (the Bloembergen-Rowland mechanism) leads to antiferromagnetic coupling between pairs of localized spins. Here, we critically revisit these two approaches, show their shortcomings, and elucidate why the magnitude of the interband contribution is small even in topological systems. From the proposed theoretical approach and our computational studies of magnetism in Mn-doped HgTe and CdTe, we conclude that, in the absence of band carriers, the superexchange dominates, and its sign depends on the coordination and charge state of magnetic impurities rather than on the topological class of the host material.
113 - Z.-X. Li , Yunshan Cao , Peng Yan 2020
Pursuing topological phases in natural and artificial materials is one of the central topics in modern physical science and engineering. In classical magnetic systems, spin waves (or magnons) and magnetic solitons (such as domain wall, vortex, skyrmi on, etc) represent two important excitations. Recently, the topological insulator and semimetal states in magnon- and soliton-based crystals (or metamaterials) have attracted growing attention owing to their interesting dynamics and promising applications for designing robust spintronic devices. Here, we give an overview of current progress of topological phases in structured classical magnetism. We first provide a brief introduction to spin wave, and discuss its topological properties including magnon Hall effects, topological magnon insulators, and Dirac (Weyl) magnon semimetals. Appealing proposal of topological magnonic devices is also highlighted. We then review the collective-coordinate approach for describing the dynamics of magnetic soliton lattice. Pedagogical topological models such as the Su-Schrieffer-Heeger model and the Haldane model and their manifestation in magnetic soliton crystals are elaborated. Then we focus on the topological properties of magnetic solitons, by theoretically analyzing the first-order topological insulating phases in low dimensional systems and higher-order topological states in breathing crystals. Finally, we discuss the experimental realization and detection of the edge states in both the magnonic and solitonic crystals. We remark the challenges and future prospects before concluding this article.
108 - Qi Yao , Yuchen Ji , Peng Chen 2020
The combination of magnetism and topology in magnetic topological insulators (MTIs) has led to unprecedented advancements of time reversal symmetry-breaking topological quantum physics in the past decade. Compared with the uniform films, the MTI hete rostructures provide a better framework to manipulate the spin-orbit coupling and spin properties. In this review, we summarize the fundamental mechanisms related to the physical orders host in (Bi,Sb)2(Te,Se)3-based hybrid systems. Besides, we provide an assessment on the general strategies to enhance the magnetic coupling and spin-orbit torque strength through different structural engineering approaches and effective interfacial interactions. Finally, we offer an outlook of MTI heterostructures-based spintronics applications, particularly in view of their feasibility to achieve room-temperature operation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا