ترغب بنشر مسار تعليمي؟ اضغط هنا

Interleaved numerical renormalization group as an efficient multiband impurity solver

63   0   0.0 ( 0 )
 نشر من قبل Katharina M. Stadler
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum impurity problems can be solved using the numerical renormalization group (NRG), which involves discretizing the free conduction electron system and mapping to a `Wilson chain. It was shown recently that Wilson chains for different electronic species can be interleaved by use of a modified discretization, dramatically increasing the numerical efficiency of the RG scheme [Phys. Rev. B 89, 121105(R) (2014)]. Here we systematically examine the accuracy and efficiency of the `interleaved NRG (iNRG) method in the context of the single impurity Anderson model, the two-channel Kondo model, and a three-channel Anderson-Hund model. The performance of iNRG is explicitly compared with `standard NRG (sNRG): when the average number of states kept per iteration is the same in both calculations, the accuracy of iNRG is equivalent to that of sNRG but the computational costs are signifficantly lower in iNRG when the same symmetries are exploited. Although iNRG weakly breaks SU(N) channel symmetry (if present), both accuracy and numerical cost are entirely competitive with sNRG exploiting full symmetries. iNRG is therefore shown to be a viable and technically simple alternative to sNRG for high-symmetry models. Moreover, iNRG can be used to solve a range of lower-symmetry multiband problems that are inaccessible to sNRG.



قيم البحث

اقرأ أيضاً

138 - L. Merker , T. A. Costi 2012
We introduce a method to obtain the specific heat of quantum impurity models via a direct calculation of the impurity internal energy requiring only the evaluation of local quantities within a single numerical renormalization group (NRG) calculation for the total system. For the Anderson impurity model, we show that the impurity internal energy can be expressed as a sum of purely local static correlation functions and a term that involves also the impurity Green function. The temperature dependence of the latter can be neglected in many cases, thereby allowing the impurity specific heat, $C_{rm imp}$, to be calculated accurately from local static correlation functions; specifically via $C_{rm imp}=frac{partial E_{rm ionic}}{partial T} + 1/2frac{partial E_{rm hyb}}{partial T}$, where $E_{rm ionic}$ and $E_{rm hyb}$ are the energies of the (embedded) impurity and the hybridization energy, respectively. The term involving the Green function can also be evaluated in cases where its temperature dependence is non-negligible, adding an extra term to $C_{rm imp}$. For the non-degenerate Anderson impurity model, we show by comparison with exact Bethe ansatz calculations that the results recover accurately both the Kondo induced peak in the specific heat at low temperatures as well as the high temperature peak due to the resonant level. The approach applies to multiorbital and multichannel Anderson impurity models with arbitrary local Coulomb interactions. An application to the Ohmic two state system and the anisotropic Kondo model is also given, with comparisons to Bethe ansatz calculations. The new approach could also be of interest within other impurity solvers, e.g., within quantum Monte Carlo techniques.
198 - Avijit Shee , Dominika Zgid 2019
We investigate the performance of Greens function coupled cluster singles and doubles (CCSD) method as a solver for Greens function embedding methods. To develop an efficient CC solver, we construct the one-particle Greens function from the coupled c luster (CC) wave function based on a non-hermitian Lanczos algorithm. The major advantage of this method is that its scaling does not depend on the number of frequency points. We have tested the applicability of the CC Greens function solver in the weakly to strongly correlated regimes by employing it for a half-filled 1D Hubbard model projected onto a single site impurity problem and a half-filled 2D Hubbard model projected onto a 4-site impurity problem. For the 1D Hubbard model, for all interaction strengths, we observe an excellent agreement with the full configuration interaction (FCI) technique, both for the self-energy and spectral function. For the 2D Hubbard, we have employed an open-shell version of the current implementation and observed some discrepancies from FCI in the strongly correlated regime. Finally, on an example of a small ammonia cluster, we analyze the performance of the Greens function CCSD solver within the self-energy embedding theory (SEET) with Hartee-Fock (HF) and Greens function second order (GF2) for the treatment of the environment.
We show how the density-matrix numerical renormalization group (DM-NRG) method can be used in combination with non-Abelian symmetries such as SU(N), where the decomposition of the direct product of two irreducible representations requires the use of a so-called outer multiplicity label. We apply this scheme to the SU(3) symmetrical Anderson model, for which we analyze the finite size spectrum, determine local fermionic, spin, superconducting, and trion spectral functions, and also compute the temperature dependence of the conductance. Our calculations reveal a rich Fermi liquid structure.
In the present paper, we present an efficient continuous-time quantum Monte Carlo impurity solver with high acceptance rate at low temperature for multi-orbital quantum impurity models with general interaction. In this hybridization expansion impurit y solver, the imaginary time evolution operator for the high energy multiplets, which decays very rapidly with the imaginary time, is approximated by a probability normalized $delta$-function. As the result, the virtual charge fluctuations of $f^{n}rightarrow f^{npm1}$ are well included on the same footing without applying Schrieffer-Wolff transformation explicitly. As benchmarks, our algorithm perfectly reproduces the results for both Coqblin-Schriffeer and Kondo lattice models obtained by CT-J method developed by Otsuki {it et al}. Furthermore, it allows capturing low energy physics of heavy-fermion materials directly without fitting the exchange coupling $J$ in the Kondo model.
The density matrix renormalization group method is applied to obtain the ground state phase diagram of the single impurity Anderson model on the honeycomb lattice at half filling. The calculation of local static quantities shows that the phase diagra m contains two distinct phases, the local moment (LM) phase and the asymmetric strong coupling (ASC) phase. These results are supported by the local spin and charge excitation spectra, which exhibit qualitatively different behavior in these two phases and also reveal the existence of the valence fluctuating point at the phase boundary. For comparison, we also study the low-energy effective pseudogap Anderson model. Although the high-energy excitations are obviously different, we find that the ground state phase diagram and the asymptotically low-energy excitations are in good quantitative agreement with those for the single impurity Anderson model on the honeycomb lattice, thus providing the first quantitative justification for the previous studies based on low-energy approximate approaches. Furthermore, we find that the lowest entanglement level is doubly degenerate for the LM phase, whereas it is singlet for the ASC phase and is accidentally three fold degenerate at the valence fluctuating point. Our results therefore clearly demonstrate that the low-lying entanglement spectrum can be used to determine with high accuracy the phase boundary of the impurity quantum phase transition.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا