ﻻ يوجد ملخص باللغة العربية
In a Bayesian context, theoretical parameters are correlated random variables. Then, the constraints on one parameter can be improved by either measuring this parameter more precisely - or by measuring the other parameters more precisely. Especially in the case of many parameters, a lengthy process of guesswork is then needed to determine the most efficient way to improve one parameters constraints. In this short article, we highlight an extremely simple analytical expression that replaces the guesswork and that facilitates a deeper understanding of optimization with interdependent parameters.
We show how to obtain constraints on $beta=f/b$, the ratio of the matter growth rate and the bias that quantifies the linear redshift-space distortions, that are independent of the cosmological model, using multiple tracers of large-scale structure.
A key aspect in the determination of stellar properties is the comparison of observational constraints with predictions from stellar models. Asteroseismic Inference on a Massive Scale (AIMS) is an open source code that uses Bayesian statistics and a
Fisher forecasts are a common tool in cosmology with applications ranging from survey planning to the development of new cosmological probes. While frequently adopted, they are subject to numerical instabilities that need to be carefully investigated
Starting from the Fisher matrix for counts in cells, I derive the full Fisher matrix for surveys of multiple tracers of large-scale structure. The key assumption is that the inverse of the covariance of the galaxy counts is given by the naive matrix
The Fisher Information Matrix (FIM) has been the standard approximation to the accuracy of parameter estimation on gravitational-wave signals from merging compact binaries due to its ease-of-use and rapid computation time. While the theoretical faili