ترغب بنشر مسار تعليمي؟ اضغط هنا

Galaxy Infall by Interacting with its Environment: a Comprehensive Study of 340 Galaxy Clusters

57   0   0.0 ( 0 )
 نشر من قبل Liyi Gu
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

To study systematically the evolution on the angular extents of the galaxy, ICM, and dark matter components in galaxy clusters, we compiled the optical and X-ray properties of a sample of 340 clusters with redshifts $<0.5$, based on all the available data with the Sloan Digital Sky Survey (SDSS) and {it Chandra}/{it XMM-Newton}. For each cluster, the member galaxies were determined primarily with photometric redshift measurements. The radial ICM mass distribution, as well as the total gravitational mass distribution, were derived from a spatially-resolved spectral analysis of the X-ray data. When normalizing the radial profile of galaxy number to that of the ICM mass, the relative curve was found to depend significantly on the cluster redshift; it drops more steeply towards outside in lower redshift subsamples. The same evolution is found in the galaxy-to-total mass profile, while the ICM-to-total mass profile varies in an opposite way. We interpret that the galaxies, the ICM, and the dark matter components had similar angular distributions when a cluster was formed, while the galaxies travelling interior of the cluster have continuously fallen towards the center relative to the other components, and the ICM has slightly expanded relative to the dark matter although it suffers strong radiative loss. This cosmological galaxy infall, accompanied by an ICM expansion, can be explained by considering that the galaxies interact strongly with the ICM while they are moving through it. The interaction is considered to create a large energy flow of $10^{44-45}$ erg $rm s^{-1}$ per cluster from the member galaxies to their environment, which is expected to continue over cosmological time scales.



قيم البحث

اقرأ أيضاً

We present and analyse an extensive dataset of the superluminous supernova (SLSN) LSQ14mo (z = 0.256), consisting of a multi-colour lightcurve from -30 d to +70 d in the rest-frame and a series of 6 spectra from PESSTO covering -7 d to +50 d. This is among the densest spectroscopic coverage, and best-constrained rising lightcurve, for a fast-declining hydrogen-poor SLSN. The bolometric lightcurve can be reproduced with a millisecond magnetar model with ~ 4 M_sol ejecta mass, and the temperature and velocity evolution is also suggestive of a magnetar as the power source. Spectral modelling indicates that the SN ejected ~ 6 M_sol of CO-rich material with a kinetic energy of ~ 7 x 10^51 erg, and suggests a partially thermalised additional source of luminosity between -2 d and +22 d. This may be due to interaction with a shell of material originating from pre-explosion mass loss. We further present a detailed analysis of the host galaxy system of LSQ14mo. PESSTO and GROND imaging show three spatially resolved bright regions, and we used the VLT and FORS2 to obtain a deep (five-hour exposure) spectra of the SN position and the three star-forming regions, which are at a similar redshift. The FORS spectrum at +300 days shows no trace of SN emission lines and we place limits on the strength of [O I] from comparisons with other Ic SNe. The deep spectra provides a unique chance to investigate spatial variations in the host star-formation activity and metallicity. The specific star-formation rate is similar in all three components, as is the presence of a young stellar population. However, the position of LSQ14mo exhibits a lower metallicity, with 12 + log(O/H) = 8.2 in both the R23 and N2 scales (corresponding to ~ 0.3 Z_sol). We propose that the three bright regions in the host system are interacting, which thus triggers star-formation and forms young stellar populations.
We report the detection of 388 pulsating variable stars (and some additional miscellaneous variables) in the Carina dSph galaxy over an area covering the full visible extent of the galaxy and extending a few times beyond its photometric (King) tidal radius along the direction of its major axis. Included in this total are 340 newly discovered dwarf Cepheids which are mostly located ~2.5 magnitudes below the horizontal branch and have very short periods (<0.1 days) typical of their class and consistent with their location on the upper part of the extended main sequence of the younger populations of the galaxy. Several extra-tidal dwarf cepheids were found in our survey up to a distance of ~1 degree from the center of Carina. Our sample also includes RR Lyrae stars and anomalous Cepheids some of which were found outside the galaxys tidal radius as well. This supports past works that suggests Carina is undergoing tidal disruption. We use the period-luminosity relationship for dwarf Cepheids to estimate a distance modulus of 20.17 +/- 0.10 mags, in very good agreement with the estimate from RR Lyrae stars. We find some important differences in the properties of the dwarf Cepheids of Carina and those in Fornax and the LMC, the only extragalactic samples of dwarf Cepheids currently known. These differences may reflect a metallicity spread, depth along the line of sight and/or, different evolutionary paths of the dwarf Cepheid stars.
We study the effects of the environment on galaxy quenching in the outskirts of clusters at $0.04 < z < 0.08$. We use a subsample of 14 WINGS and OmegaWINGS clusters that are linked to other groups/clusters by filaments and study separately galaxies located in two regions in the outskirts of these clusters according to whether they are located towards the filaments directions or not. We also use samples of galaxies in clusters and field as comparison. Filamentary structures linking galaxy groups/clusters were identified over the Six Degree Field Galaxy Redshift Survey Data Release 3. We find a fraction of passive galaxies in the outskirts of clusters intermediate between that of the clusters and the fields. We find evidence of a more effective quenching in the direction of the filaments. We also analyse the abundance of post-starburst galaxies in the outskirts of clusters focusing our study on two extreme sets of galaxies according to their phase-space position: backsplash and true infallers. We find that up to $sim70%$ of post-starburst galaxies in the direction of filaments are likely backsplash, while this number drops to $sim40%$ in the isotropic infall region. The presence of this small fraction of galaxies in filaments that are falling into clusters for the first time and have been recently quenched, supports a scenario in which a significant number of filament galaxies have been quenched long time ago.
We present the first X-ray dedicated study of the galaxy cluster A795 and of the Fanaroff-Riley Type 0 hosted in its brightest cluster galaxy. Using an archival 30 ks textit{Chandra} observation we study the dynamical state and cooling properties of the intracluster medium, and we investigate whether the growth of the radio galaxy is prevented by the surrounding environment. We discover that A795 is a weakly cool core cluster, with an observed mass deposition rate $lessapprox 14,$ M$_{odot}$yr$^{-1}$ in the cooling region (central $sim$66 kpc). In the inner $sim$ 30 kpc we identify two putative X-ray cavities, and we unveil the presence of two prominent cold fronts at $sim$60 kpc and $sim$178 kpc from the center, located along a cold ICM spiral feature. The central galaxy, which is offset by 17.7 kpc from the X-ray peak, is surrounded by a multi-temperature gas with an average density of $n_{text{e}} = 2.14 times 10^{-2}$ cm$^{-3}$. We find extended radio emission at 74-227 MHz centered on the cluster, exceeding the expected flux from the radio galaxy extrapolated at low frequency. We propose that sloshing is responsible for the spiral morphology of the gas and the formation of the cold fronts, and that the environment alone cannot explain the compactness of the radio galaxy. We argue that the power of the two cavities and the sloshing kinetic energy can reduce and offset cooling. Considering the spectral and morphological properties of the extended radio emission, we classify it as a candidate radio mini-halo.
We present Southern African Large Telescope (SALT) follow-up observations of seven massive clusters detected by the Atacama Cosmology Telescope (ACT) on the celestial equator using the Sunyaev-Zeldovich (SZ) effect. We conducted multi-object spectros copic observations with the Robert Stobie Spectrograph in order to measure galaxy redshifts in each cluster field, determine the cluster line-of-sight velocity dispersions, and infer the cluster dynamical masses. We find that the clusters, which span the redshift range 0.3 < z < 0.55, range in mass from (5 -- 20) x 10$^{14}$ solar masses (M200c). Their masses, given their SZ signals, are similar to those of southern hemisphere ACT clusters previously observed using Gemini and the VLT. We note that the brightest cluster galaxy in one of the systems studied, ACT-CL J0320.4+0032 at z = 0.38, hosts a Type II quasar. Only a handful of such systems are currently known, and therefore ACT-CL J0320.4+0032 may be a rare example of a very massive halo in which quasar-mode feedback is actively taking place.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا