ﻻ يوجد ملخص باللغة العربية
Deep rest-frame optical spectroscopy is critical for characterizing and understanding the physical conditions and properties of the ionized gas in galaxies. Here, we present a new spectroscopic survey called Metal Abundances across Cosmic Time or $mathcal{MACT}$, which will obtain rest-frame optical spectra for $sim$3000 emission-line galaxies. This paper describes the optical spectroscopy that has been conducted with MMT/Hectospec and Keck/DEIMOS for $approx$1900 $z=0.1-1$ emission-line galaxies selected from our narrowband and intermediate-band imaging in the Subaru Deep Field. In addition, we present a sample of 164 galaxies for which we have measured the weak [OIII]$lambda$4363 line (66 with at least 3$sigma$ detections and 98 with significant upper limits). This nebular emission line determines the gas-phase metallicity by measuring the electron temperature of the ionized gas. This paper presents the optical spectra, emission-line measurements, interstellar properties (e.g., metallicity, gas density), and stellar properties (e.g., star formation rates, stellar mass). Paper II of the $mathcal{MACT}$ survey (Ly et al.) presents the first results on the stellar mass--gas metallicity relation at $zlesssim1$ using the sample with [OIII]$lambda$4363 measurements.
Extragalactic studies have demonstrated there is a moderately tight ($approx$0.3 dex) relationship between galaxy stellar mass ($M_{star}$) and star formation rate (SFR) that holds for star-forming galaxies at $M_{star} sim 3 times 10^8$-10$^{11}~M_{
We present the first results from MMT and Keck spectroscopy for a large sample of $0.1leq zleq1$ emission-line galaxies selected from our narrow-band imaging in the Subaru Deep Field. We measured the weak [OIII]$lambda$4363 emission line for 164 gala
The Subaru Deep Field (SDF) project is a program of Subaru Observatory to carry out a deep galaxy survey over a blank field as large as 34x27. The program consists of very deep multi-band optical imaging, near infrared imaging for smaller portions of
We study the dust evolution in galaxies by implementing a detailed dust prescription in the SAGE semi-analytical model for galaxy formation. The new model, called Dusty SAGE, follows the condensation of dust in the ejecta of type II supernovae and as
We present observations of SDF-05M05, an unusual optical transient discovered in the Subaru Deep Field (SDF). The duration of the transient is > ~800 d in the observer frame, and the maximum brightness during observation reached approximately 23 mag