ترغب بنشر مسار تعليمي؟ اضغط هنا

Spontaneous symmetry breaking of self-trapped and leaky modes in quasi-double-well potentials

400   0   0.0 ( 0 )
 نشر من قبل Krzysztof Zegadlo
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate competition between two phase transitions of the second kind induced by the self-attractive nonlinearity, viz., self-trapping of the leaky modes, and spontaneous symmetry breaking (SSB) of both fully trapped and leaky states. We use a one-dimensional mean-field model, which combines the cubic nonlinearity and a double-well-potential (DWP) structure with an elevated floor, which supports leaky modes (quasi-bound states) in the linear limit. The setting can be implemented in nonlinear optics and BEC. The order in which the SSB and self-trapping transitions take place with the growth of the nonlinearity strength depends on the height of the central barrier of the DWP: the SSB happens first if the barrier is relatively high, while self-trapping comes first if the barrier is lower. The SSB of the leaky modes is characterized by specific asymmetry of their radiation tails, which, in addition, feature a resonant dependence on the relation between the total size of the system and radiation wavelength. As a result of the SSB, the instability of symmetric modes initiates spontaneous Josephson oscillations. Collisions of freely moving solitons with the DWP structure admit trapping of an incident soliton into a state of persistent shuttle motion, due to emission of radiation. The study is carried out numerically, and basic results are explained by means of analytical considerations.



قيم البحث

اقرأ أيضاً

94 - Elad Shamriz , Nir Dror , 2016
We report results of the analysis of the spontaneous symmetry breaking (SSB) in the basic (actually, simplest) model which is capable to produce the SSB phenomenology in the one-dimensional setting. It is based on the Gross-Pitaevskii - nonlinear Sch roedinger equation with the cubic self-attractive term and a double-well-potential built as an infinitely deep potential box split by a narrow (delta-functional) barrier. The barriers strength, epsilon, is the single free parameter of the scaled form of the model. It may be implemented in atomic Bose-Einstein condensates and nonlinear optics. The SSB bifurcation of the symmetric ground state (GS) is predicted analytically in two limit cases, viz., for deep or weak splitting of the potential box by the barrier. For the generic case, a variational approximation (VA) is elaborated. The analytical findings are presented along with systematic numerical results. Stability of stationary states is studied through the calculation of eigenvalues for small perturbations, and by means of direct simulations. The GS always undergoes the SSB bifurcation of the supercritical type, as predicted by the VA at moderate values of epsilon, although the VA fails at small epsilon, due to inapplicability of the underlying ansatz in that case. However, the latter case is correctly treated by the approximation based on a soliton ansatz. On top of the GS, the first and second excited states are studied too. The antisymmetric mode (the first excited state) is destabilized at a critical value of its norm. The second excited state undergoes the SSB bifurcation, like the GS, but, unlike it, the bifurcation produces an unstable asymmetric mode. All unstable modes tend to spontaneously reshape into the asymmetric GS.
We propose a model of a nonlinear double-well potential (NDWP), alias a double-well pseudopotential, with the objective to study an alternative implementation of the spontaneous symmetry breaking (SSB) in Bose-Einstein condensates (BECs) and optical media, under the action of a potential with two symmetric minima. In the limit case when the NDWP structure is induced by the local nonlinearity coefficient represented by a set of two delta-functions, a fully analytical solution is obtained for symmetric, antisymmetric and asymmetric states. In this solvable model, the SSB bifurcation has a fully subcritical character. Numerical analysis, based on both direct simulations and computation of stability eigenvalues, demonstrates that, while the symmetric states are stable up to the SSB bifurcation point, both symmetric and emerging asymmetric states, as well as all antisymmetric ones, are unstable in the model with the delta-functions. In the general model with a finite width of the nonlinear-potential wells, the asymmetric states quickly become stable, simultaneously with the switch of the SSB bifurcation from the subcritical to supercritical type. Antisymmetric solutions may also get stabilized in the NDWP structure of the general type, which gives rise to a bistability between them and asymmetric states. The symmetric states require a finite norm for their existence, an explanation to which is given. A full diagram for the existence and stability of the trapped states in the model is produced. Experimental observation of the predicted effects should be possible in BEC formed by several hundred atoms.
The realization of spontaneous symmetry breaking (SSB) requires a system that exhibits a near perfect symmetry. SSB manifests itself through a pitchfork bifurcation, but that bifurcation is fragile, and perturbed by any asymmetry or imperfections. Co nsequently, exploiting SSB for real-world applications is challenging and often requires cumbersome stabilization techniques. Here, we reveal a novel method that automatically leads to symmetric conditions, and demonstrate its practical application in coherently-driven, two-mode, passive Kerr resonators. More specifically, we show that introducing a $pi$-phase defect between the modes of a driven nonlinear resonator makes SSB immune to asymmetries by means of a period-doubled dynamics of the systems modal evolution. The two-roundtrip evolution induces a self-symmetrization of the system through averaging of the parameters, hence enabling the realization of SSB with unprecedented robustness. This mechanism is universal: all symmetry-broken solutions of driven Kerr resonators have a period-doubled counterpart. We experimentally demonstrate this universality by considering the polarization symmetry breaking of several different nonlinear structures found in normal and anomalous dispersion fiber cavities, including homogeneous states, polarization domain walls, and bright vector cavity solitons.
Quantum adiabatic evolution, an important fundamental concept inphysics, describes the dynamical evolution arbitrarily close to the instantaneous eigenstate of a slowly driven Hamiltonian. In most systems undergoing spontaneous symmetry-breaking tran sitions, their two lowest eigenstates change from non-degenerate to degenerate. Therefore, due to the corresponding energy-gap vanishes, the conventional adiabatic condition becomes invalid. Here we explore the existence of quantum adiabatic evolutions in spontaneous symmetry-breaking transitions and derive a symmetry-dependent adiabatic condition. Because the driven Hamiltonian conserves the symmetry in the whole process, the transition between different instantaneous eigenstates with different symmetries is forbidden. Therefore, even if the minimum energy-gap vanishes, symmetry-protected quantum adiabatic evolutioncan still appear when the driven system varies according to the symmetry-dependent adiabatic condition. This study not only advances our understandings of quantum adiabatic evolution and spontaneous symmetry-breaking transitions, but also provides extensive applications ranging from quantum state engineering, topological Thouless pumping to quantum computing.
82 - J. Smits , H.T.C. Stoof , 2021
Spontaneous symmetry breaking (SSB) is a key concept in physics that for decades has played a crucial role in the description of many physical phenomena in a large number of different areas, like particle physics, cosmology, and condensed-matter phys ics. SSB is thus an ubiquitous concept connecting several, both high and low energy, areas of physics and many textbooks describe its basic features in great detail. However, to study the dynamics of symmetry breaking in the laboratory is extremely difficult. In condensed-matter physics, for example, tiny external disturbances cause a preference for the breaking of the symmetry in a particular configuration and typically those disturbances cannot be avoided in experiments. Notwithstanding these complications, here we describe an experiment, in which we directly observe the spontaneous breaking of the temporal phase of a driven system with respect to the drive into two distinct values differing by $pi$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا