ﻻ يوجد ملخص باللغة العربية
We present a further extension of the HYPERDIRE project, which is devoted to the creation of a set of Mathematica-based program packages for manipulations with Horn-type hypergeometric functions on the basis of differential equations. Specifically, we present the implementation of the differential reduction for the Lauricella function $F_C$ of three variables.
HYPERDIRE is a project devoted to the creation of a set of Mathematica-based programs for the differential reduction of hypergeometric functions. The current version allows for manipulations involving the full set of Horn-type hypergeometric functions of two variables, including 30 functions.
The differential-reduction algorithm, which allows one to express generalized hypergeometric functions with parameters of arbitrary values in terms of such functions with parameters whose values differ from the original ones by integers, is discussed
We will present some (formal) arguments that any Feynman diagram can be understood as a particular case of a Horn-type multivariable hypergeometric function. The advantages and disadvantages of this type of approach to the evaluation of Feynman diagrams is discussed.
We describe the application of differential reduction algorithms for Feynman Diagram calculation. We illustrate the procedure in the context of generalized hypergeometric functions, and give an example for a type of q-loop bubble diagram.
We briefly sketch a proof concerning the structure of the all-order epsilon-expansions of generalized hypergeometric functions with special sets of parameters.