ﻻ يوجد ملخص باللغة العربية
We construct an X-ray spectral model of reprocessing by a torus in an active galactic nucleus (AGN) with a Monte Carlo simulation framework MONACO. Two torus geometries of smooth and clumpy cases are considered and compared. In order to reproduce a Compton shoulder accurately, MONACO includes not only free electron scattering but also bound electron scattering. Raman and Reyleigh scattering are also treated, and scattering cross sections dependent on chemical states of hydrogen and helium are included. Doppler broadening by turbulence velocity can be implemented. Our model gives consistent results with other available models, such as MYTorus, except for differences due to different physical parameters and assumptions. We studied the dependence on torus parameters for Compton shoulder, and found that a intensity ratio of Compton shoulder to line core mainly depends on the column density, inclination angle, and metal abundance. For instance, an increase of metal abundance makes the Compton shoulder relatively weak. Also, shape of Compton shoulder depends on the column density. Furthermore, these dependences become different between smooth and clumpy cases. Then, we discuss the possibility of ASTRO-H SXS spectroscopy of Compton shoulder in AGN reflection spectra.
We present a unification model for a clumpy obscurer in active galactic nuclei (AGN) and investigate the properties of the resulting X-ray spectrum. Our model is constructed to reproduce the column density distribution of the AGN population and cloud
X-ray variation is a ubiquitous feature of active galactic nuclei (AGNs), however, its origin is not well understood. In this paper, we show that the X-ray flux variations in some AGNs, and correspondingly the power spectral densities (PSDs) of the v
Galactic gas-gas collisions involving a turbulent multiphase ISM share common ISM properties: dense extraplanar gas visible in CO, large linewidths (>= 50 km/s), strong mid-infrared H_2 line emission, low star formation activity, and strong radio con
Active galactic nuclei (AGN) are complex phenomena. At the heart of an AGN is a relativistic accretion disk around a spinning supermassive black hole (SMBH) with an X-ray emitting corona and, sometimes, a relativistic jet. On larger scales, the outer
The broad iron spectral features are often seen in X-ray spectra of Active Galactic Nuclei (AGN) and black-hole binaries (BHB). These features may be explained either by the relativistic disc reflection scenario or the partial covering scenario: It i