ترغب بنشر مسار تعليمي؟ اضغط هنا

Massive Warm/Hot Galaxy Coronae as Probed by UV/X-ray Oxygen Absorption and Emission: I - Basic Model

82   0   0.0 ( 0 )
 نشر من قبل Yakov Faerman
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We construct an analytic phenomenological model for extended warm/hot gaseous coronae of $L_*$ galaxies. We consider UV OVI COS-Halos absorption line data in combination with Milky Way X-ray OVII and OVIII absorption and emission. We fit these data with a single model representing the COS-Halos galaxies and a Galactic corona. Our model is multi-phased, with hot and warm gas components, each with a (turbulent) log-normal distribution of temperatures and densities. The hot gas, traced by the X-ray absorption and emission, is in hydrostatic equilibrium in a Milky Way gravitational potential. The median temperature of the hot gas is $1.5 times 10^6$~K and the mean hydrogen density is $sim 5 times 10^{-5}~{rm cm^{-3}}$. The warm component as traced by the OVI, is gas that has cooled out of the high density tail of the hot component. The total warm/hot gas mass is high and is $1.2 times 10^{11}~{rm M_{odot}}$. The gas metallicity we require to reproduce the oxygen ion column densities is $0.5$ solar. The warm OVI component has a short cooling time ($sim 2 times 10^8$ years), as hinted by observations. The hot component, however, is $sim 80%$ of the total gas mass and is relatively long-lived, with $t_{cool} sim 7 times 10^{9}$ years. Our model supports suggestions that hot galactic coronae can contain significant amounts of gas. These reservoirs may enable galaxies to continue forming stars steadily for long periods of time and account for missing baryons in galaxies in the local universe.

قيم البحث

اقرأ أيضاً

We construct a new analytic phenomenological model for the extended circumgalactic material (CGM) of $L^*$ galaxies. Our model reproduces the OVII/OVIII absorption observations of the Milky Way (MW) and the OVI measurements reported by the COS-Halos and eCGM surveys. The warm/hot gas is in hydrostatic equilibrium in a MW gravitational potential, and we adopt a barotropic equation of state, resulting in a temperature variation as a function of radius. A pressure component with an adiabatic index of $gamma=4/3$ is included to approximate the effects of a magnetic field and cosmic rays. We introduce a metallicity gradient motivated by the enrichment of the inner CGM by the Galaxy. We then present our fiducial model for the corona, tuned to reproduce the observed OVI-OVIII column densities, and with a total mass of $M_{rm gas} approx 5.5 times 10^{10}~{rm M_{odot}}$ inside $r_{rm cgm} approx 280$ kpc. The gas densities in the CGM are low ($n_{rm H} = 10^{-5} - 3 times 10^{-4}~{rm cm^{-3}}$) and its collisional ionization state is modified by the metagalactic radiation field (MGRF). We show that for OVI-bearing warm/hot gas with typical observed column densities $N_{rm OVI} sim 3 times 10^{14}~{rm cm^{-2}}$ at large ($gtrsim 100$ kpc) impact parameters from the central galaxies, the ratio of the cooling to dynamical times, $t_{rm cool}/t_{rm dyn}$, has a model-independent upper limit of $lesssim 4$. In our model, $t_{rm cool}/t_{rm dyn}$ at large radii is $sim 2-3$. We present predictions for a wide range of future observations of the warm/hot CGM, from UV/X-ray absorption and emission spectroscopy, to dispersion measure (DM) and Sunyaev-Zeldovich CMB measurements. We provide the model outputs in machine-readable data files, for easy comparison and analysis.
We use the EAGLE (Evolution and Assembly of GaLaxies and their Environments) cosmological simulation to study the distribution of baryons, and far-ultraviolet (O VI), extreme-ultraviolet (Ne VIII) and X-ray (O VII, O VIII, Ne IX, and Fe XVII) line ab sorbers, around galaxies and haloes of mass $mathrm{M}_{200c}=10^{11}$-$10^{14.5},mathrm{M}_{odot}$ at redshift 0.1. EAGLE predicts that the circumgalactic medium (CGM) contains more metals than the interstellar medium across halo masses. The ions we study here trace the warm-hot, volume-filling phase of the CGM, but are biased towards temperatures corresponding to the collisional ionization peak for each ion, and towards high metallicities. Gas well within the virial radius is mostly collisionally ionized, but around and beyond this radius, and for O VI, photoionization becomes significant. When presenting observables we work with column densities, but quantify their relation with equivalent widths by analysing virtual spectra. Virial-temperature collisional ionization equilibrium ion fractions are good predictors of column density trends with halo mass, but underestimate the diversity of ions in haloes. Halo gas dominates the highest column density absorption for X-ray lines, but lower density gas contributes to strong UV absorption lines from O VI and Ne VIII. Of the O VII (O VIII) absorbers detectable in an Athena X-IFU blind survey, we find that 41 (56) per cent arise from haloes with $mathrm{M}_{200c}=10^{12.0}$-$10^{13.5},mathrm{M}_{odot}$. We predict that the X-IFU will detect O VII (O VIII) in 77 (46) per cent of the sightlines passing $mathrm{M}_{star}=10^{10.5}$-$10^{11.0},mathrm{M}_{odot}$ galaxies within 100 pkpc (59 (82) per cent for $mathrm{M}_{star}>10^{11.0},mathrm{M}_{odot}$). Hence, the X-IFU will probe covering fractions comparable to those detected with the Cosmic Origins Spectrograph for O VI.
The Warm-Hot Intergalactic Medium (WHIM) arises from shock-heated gas collapsing in large-scale filaments and probably harbours a substantial fraction of the baryons in the local Universe. Absorption-line measurements in the ultraviolet (UV) and in t he X-ray band currently represent the best method to study the WHIM at low redshifts. We here describe the physical properties of the WHIM and the concepts behind WHIM absorption line measurements of H I and high ions such as O VI, O VII, and O VIII in the far-ultraviolet and X-ray band. We review results of recent WHIM absorption line studies carried out with UV and X-ray satellites such as FUSE, HST, Chandra, and XMM-Newton and discuss their implications for our knowledge of the WHIM.
An analytical formula is developed to represent accurately the photoabsorption cross section of O I for all energies of interest in X-ray spectral modeling. In the vicinity of the Kedge, a Rydberg series expression is used to fit R-matrix results, in cluding important orbital relaxation effects, that accurately predict the absorption oscillator strengths below threshold and merge consistently and continuously to the above-threshold cross section. Further minor adjustments are made to the threshold energies in order to reliably align the atomic Rydberg resonances after consideration of both experimental and observed line positions. At energies far below or above the K-edge region, the formulation is based on both outer- and inner-shell direct photoionization, including significant shake-up and shake-off processes that result in photoionization-excitation and double photoionization contributions to the total cross section. The ultimate purpose for developing a definitive model for oxygen absorption is to resolve standing discrepancies between the astronomically observed and laboratory measured line positions, and between the inferred atomic and molecular oxygen abundances in the interstellar medium from XSTAR and SPEX spectral models.
In order to study the temperature distribution of the extended gas within the Orion Kleinmann-Low nebula, we have mapped the emission by methyl cyanide (CH3CN) in its J=6_K-5_K, J=12_K-11_K, J=13_K-12_K, and J=14_K-13_K transitions at an average angu lar resolution of ~10 arcsec (22 arcsec for the 6_K-5_K lines), as part of a new 2D line survey of this region using the IRAM 30m telescope. These fully sampled maps show extended emission from warm gas to the northeast of IRc2 and the distinct kinematic signatures of the hot core and compact ridge source components. We have constructed population diagrams for the four sets of K-ladder emission lines at each position in the maps and have derived rotational excitation temperatures and total beam-averaged column densities from the fitted slopes. In addition, we have fitted LVG model spectra to the observations to determine best-fit physical parameters at each map position, yielding the distribution of kinetic temperatures across the region. The resulting temperature maps reveal a region of hot (T > 350 K) material surrounding the northeastern edge of the hot core, whereas the column density distribution is more uniform and peaks near the position of IRc2. We attribute this region of hot gas to shock heating caused by the impact of outflowing material from active star formation in the region, as indicated by the presence of broad CH3CN lines. This scenario is consistent with predictions from C-shock chemical models that suggest that gas-phase methyl cyanide survives in the post-shock gas and can be somewhat enhanced due to sputtering of grain mantles in the passing shock front.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا