ترغب بنشر مسار تعليمي؟ اضغط هنا

Solubility of Rock in Steam Atmospheres of Planets

124   0   0.0 ( 0 )
 نشر من قبل Bruce Fegley Jr
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Extensive experimental studies show all major rocky elements (Si, Mg, Fe, Ni, Ca, Al, Na, K) dissolve in steam to a greater or lesser extent. We use these results to compute chemical equilibrium abundances of rocky element-bearing gases in steam atmospheres equilibrated with silicate magma oceans. Rocky elements partition into steam atmospheres as volatile hydroxide gases and via reaction with HF or HCl as volatile halide gases in much larger amounts than expected from their vapor pressures over volatile-free solid or molten rock at the same temperature. We compute the extent of fractional vaporization by defining gas to magma partition coefficients and show Earths sub-solar Si to Mg bulk elemental ratio may be due to loss of a primordial steam atmosphere. We conclude hot rocky exoplanets that are undergoing or have undergone escape of steam atmospheres may experience fractional vaporization and loss of Si, Mg, Fe, Ni, Ca, Al, Na, and K. This loss may modify their bulk composition, density, heat balance, and internal structure.

قيم البحث

اقرأ أيضاً

158 - Ch. Helling 2016
Brown dwarfs and giant gas extrasolar planets have cold atmospheres with a rich chemical compositions from which mineral cloud particles form. Their properties, like particle sizes and material composition, vary with height, and the mineral cloud par ticles are charged due to triboelectric processes in such dynamic atmospheres. The dynamics of the atmospheric gas is driven by the irradiating host star and/or by the rotation of the objects that changes during its lifetime. Thermal gas ionisation in these ultra-cool but dense atmospheres allows electrostatic interactions and magnetic coupling of a substantial atmosphere volume. Combined with a strong magnetic field $gg B_{rm Earth}$, a chromosphere and aurorae might form as suggested by radio and X-ray observations of brown dwarfs. Non-equilibrium processes like cosmic ray ionisation and discharge processes in clouds will increase the local pool of free electrons in the gas. Cosmic rays and lighting discharges also alter the composition of the local atmospheric gas such that tracer molecules might be identified. Cosmic rays affect the atmosphere through air showers which was modelled with a 3D Monte Carlo radiative transfer code to be able to visualise their spacial extent. Given a certain degree of thermal ionisation of the atmospheric gas, we suggest that electron attachment to charge mineral cloud particles is too inefficient to cause an electrostatic disruption of the cloud particles. Cloud particles will therefore not be destroyed by Coulomb explosion for the local temperature in the collisional dominated brown dwarf and giant gas planet atmospheres. However, the cloud particles are destroyed electrostatically in regions with strong gas ionisation. The potential size of such cloud holes would, however, be too small and might occur too far inside the cloud to mimic the effect of, e.g., magnetic field induced star spots.
The most widely-studied mechanism of mass loss from extrasolar planets is photoevaporation via XUV ionization, primarily in the context of highly irradiated planets. However, the EUV dissociation of hydrogen molecules can also theoretically drive atm ospheric evaporation on low-mass planets. For temperate planets such as the early Earth, impact erosion is expected to dominate in the traditional planetesimal accretion model, but it would be greatly reduced in pebble accretion scenarios, allowing other mass loss processes to be major contributors. We apply the same prescription for photoionization to this photodissociation mechanism and compare it to an analysis of other possible sources of mass loss in pebble accretion scenarios. We find that there is not a clear path to evaporating the primordial atmosphere accreted by an early Earth analog in a pebble accretion scenario. Impact erosion could remove ~2,300 bars of hydrogen if 1% of the planets mass is accreted as planetesimals, while the combined photoevaporation processes could evaporate ~750 bars of hydrogen. Photodissociation is likely a subdominant, but significant component of mass loss. Similar results apply to super-Earths and mini-Neptunes. This mechanism could also preferentially remove hydrogen from a planets primordial atmosphere, thereby leaving a larger abundance of primordial water compared to standard dry formation models. We discuss the implications of these results for models of rocky planet formation including Earths formation and the possible application of this analysis to mass loss from observed exoplanets.
Recently, gas disks have been discovered around main sequence stars well beyond the usual protoplanetary disk lifetimes (i.e., > 10 Myrs), when planets have already formed. These gas disks, mainly composed of CO, carbon, and oxygen seem to be ubiquit ous in systems with planetesimal belts (similar to our Kuiper belt), and can last for hundreds of millions of years. Planets orbiting in these gas disks will accrete a large quantity of gas that will transform their primordial atmospheres into new secondary atmospheres with compositions similar to that of the parent gas disk. Here, we quantify how large a secondary atmosphere can be created for a variety of observed gas disks and for a wide range of planet types. We find that gas accretion in this late phase is very significant and an Earths atmospheric mass of gas is readily accreted on terrestrial planets in very tenuous gas disks. In slightly more massive disks, we show that massive CO atmospheres can be accreted, forming planets with up to sub-Neptune-like pressures. Our new results demonstrate that new secondary atmospheres with high metallicities and high C/O ratios will be created in these late gas disks, resetting their primordial compositions inherited from the protoplanetary disk phase, and providing a new birth to planets that lost their atmosphere to photoevaporation or giant impacts. We therefore propose a new paradigm for the formation of atmospheres on low-mass planets, which can be tested with future observations (JWST, ELT, ARIEL). We also show that this late accretion would show a very clear signature in Sub-Neptunes or cold exo-Jupiters. Finally, we find that accretion creates cavities in late gas disks, which could be used as a new planet detection method, for low mass planets a few au to a few tens of au from their host stars.
The TRAPPIST-1 system is unique in that it has a chain of seven terrestrial Earth-like planets located close to or in its habitable zone. In this paper, we study the effect of potential cometary impacts on the TRAPPIST-1 planets and how they would af fect the primordial atmospheres of these planets. We consider both atmospheric mass loss and volatile delivery with a view to assessing whether any sort of life has a chance to develop. We ran N-body simulations to investigate the orbital evolution of potential impacting comets, to determine which planets are more likely to be impacted and the distributions of impact velocities. We consider three scenarios that could potentially throw comets into the inner region (i.e within 0.1au where the seven planets are located) from an (as yet undetected) outer belt similar to the Kuiper belt or an Oort cloud: Planet scattering, the Kozai-Lidov mechanism and Galactic tides. For the different scenarios, we quantify, for each planet, how much atmospheric mass is lost and what mass of volatiles can be delivered over the age of the system depending on the mass scattered out of the outer belt. We find that the resulting high velocity impacts can easily destroy the primordial atmospheres of all seven planets, even if the mass scattered from the outer belt is as low as that of the Kuiper belt. However, we find that the atmospheres of the outermost planets f, g and h can also easily be replenished with cometary volatiles (e.g. $sim$ an Earth ocean mass of water could be delivered). These scenarios would thus imply that the atmospheres of these outermost planets could be more massive than those of the innermost planets, and have volatiles-enriched composition.
Following Paper I we investigate the properties of atmospheres that form around small protoplanets embedded in a protoplanetary disc by conducting hydrodynamical simulations. These are now extended to three dimensions, employing a spherical grid cent red on the planet. Compression of gas is shown to reduce rotational motions. Contrasting the 2D case, no clear boundary demarcates bound atmospheric gas from disc material; instead, we find an open system where gas enters the Bondi sphere at high latitudes and leaves through the midplane regions, or, vice versa, when the disc gas rotates sub-Keplerian. The simulations do not converge to a time-independent solution; instead, the atmosphere is characterized by a time-varying velocity field. Of particular interest is the timescale to replenish the atmosphere by nebular gas, $t_mathrm{replenish}$. It is shown that the replenishment rate, $M_mathrm{atm}/t_mathrm{replenish}$, can be understood in terms of a modified Bondi accretion rate, $sim$$R_mathrm{Bondi}^2rho_mathrm{gas}v_mathrm{Bondi}$, where $v_mathrm{Bondi}$ is set by the Keplerian shear or the magnitude of the sub-Keplerian motion of the gas, whichever is larger. In the inner disk, the atmosphere of embedded protoplanets replenishes on a timescale that is shorter than the Kelvin-Helmholtz contraction (or cooling) timescale. As a result, atmospheric gas can no longer contract and the growth of these atmospheres terminates. Future work must confirm whether these findings continue to apply when the (thermodynamical) idealizations employed in this study are relaxed. But if shown to be broadly applicable, replenishment of atmospheric gas provides a natural explanation for the preponderance of gas-rich but rock-dominant planets like super-Earths and mini-Neptunes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا