ﻻ يوجد ملخص باللغة العربية
We apply a number of statistical and machine learning techniques to classify and rank gamma-ray sources from the Third Fermi Large Area Telescope (LAT) Source Catalog (3FGL), according to their likelihood of falling into the two major classes of gamma-ray emitters: pulsars (PSR) or Active Galactic Nuclei (AGN). Using 1904 3FGL sources that have been identified/associated with AGN (1738) and PSR (166), we train (using 70% of our sample) and test (using 30%) our algorithms and find that the best overall accuracy (>96%) is obtained with the Random Forest (RF) technique, while using a logistic regression (LR) algorithm results in only marginally lower accuracy. We apply the same techniques on a sub-sample of 142 known gamma-ray pulsars to classify them into two major subcategories: young (YNG) and millisecond pulsars (MSP). Once more, the RF algorithm has the best overall accuracy (~90%), while a boosted LR analysis comes a close second. We apply our two best models (RF and LR) to the entire 3FGL catalog, providing predictions on the likely nature of {it unassociated} sources, including the likely type of pulsar (YNG or MSP). We also use our predictions to shed light on the possible nature of some gamma-ray sources with known associations (e.g. binaries, SNR/PWN). Finally, we provide a list of plausible X-ray counterparts for some pulsar candidates, obtained using Swift, Chandra, and XMM. The results of our study will be of interest for both in-depth follow-up searches (e.g. pulsar) at various wavelengths, as well as for broader population studies.
Since 2008 August the Fermi Large Area Telescope (LAT) has provided continuous coverage of the gamma-ray sky yielding more than 5000 gamma-ray sources, but 54% of the detected sources remain with no certain or unknown association with a low energy co
Machine learning is an automatic technique that is revolutionizing scientific research, with innovative applications and wide use in astrophysics. The aim of this study was to developed an optimized version of an Artificial Neural Network machine lea
In three years of observations since the beginning of nominal science operations in August 2008, the Large Area Telescope (LAT) on board the Fermi Gamma Ray Space Telescope has observed high-energy (>20 MeV) gamma-ray emission from 35 gamma-ray burst
The recently published fourth Fermi Large Area Telescope source catalog (4FGL) reports 5065 gamma-ray sources in terms of direct observational gamma-ray properties. Among the sources, the largest population is the Active Galactic Nuclei (AGN), which
We report the results of searching pulsar-like candidates from the unidentified objects in the $3^{rm rd}$ Catalog of Hard Fermi-LAT sources (3FHL). Using a machine-learning based classification scheme with a nominal accuracy of $sim98%$, we have sel