ﻻ يوجد ملخص باللغة العربية
Open cluster (OC) stars share the same age and metallicity, and, in general, their age and mass can be estimated with higher precision than for field stars. For this reason, OCs are considered an important laboratory to study the relation between the physical properties of the planets and those of their host stars, and the evolution of planetary systems. We started an observational campaign within the GAPS collaboration to search for and characterize planets in OCs We monitored the Praesepe member Pr0211 to improve the eccentricity of the Hot-Jupiter (HJ) already known to orbit this star and search for additional planets. An eccentric orbit for the HJ would support a planet-planet scattering process after its formation. From 2012 to 2015, we collected 70 radial velocity (RV) measurements with HARPS-N and 36 with TRES of Pr0211. Simultaneous photometric observations were carried out with the robotic STELLA telescope in order to characterize the stellar activity. We discovered a long-term trend in the RV residuals that we show to be due to the presence of a second, massive, outer planet. Orbital parameters for the two planets are derived by simultaneously fitting RVs and photometric light curves, with the activity signal modelled as a series of sinusoids at the rotational period of the star and its harmonics. We confirm that Pr0211b has a nearly circular orbit ($e = 0.02 pm 0.01$), with an improvement of a factor two with respect to the previous determination of its eccentricity, and estimate that Pr0211c has a mass $M_psin i = 7.9 pm 0.2 M_J$, a period $P>$3500 days and a very eccentric orbit ($e>$0.60). Such peculiar systems may be typical of open clusters if the planet-planet scattering phase leading to the formation of HJs is caused by stellar encounters rather than unstable primordial orbits. Pr0211 is the first multi-planet system discovered around an OC star. (abridged)
[abridged] We analyse four transits of WASP-33b observed with the optical high-resolution HARPS-N spectrograph to confirm its nodal precession, study its atmosphere and investigate the presence of star-planet interactions.We extract the mean line pro
We performed an intensive radial velocity monitoring of XO-2S, the wide companion of the transiting planet-host XO-2N, using HARPS-N at TNG in the framework of the GAPS programme. The radial velocity measurements indicate the presence of a new planet
Context. M dwarfs are considered ideal targets for Doppler radial velocity searches. Nonetheless, the statistics of frequency of low-mass planets hosted by low mass stars remains poorly constrained. Aims. Our M-dwarf radial velocity monitoring with H
In order to understand the observed physical and orbital diversity of extrasolar planetary systems, a full investigation of these objects and of their host stars is necessary. Within this field, one of the main purposes of the GAPS observing project
Aims. For more than 1.5 years we monitored spectroscopically the star KELT-6 (BD+312447), known to host the transiting hot Saturn KELT-6b, because a previously observed long-term trend in radial velocity time series suggested the existence of an oute