ﻻ يوجد ملخص باللغة العربية
Cavity-enhanced frequency comb spectroscopy for molecule detection in the mid-infrared powerfully combines high resolution, high sensitivity, and broad spectral coverage. However, this technique, and essentially all spectroscopic methods, is limited in application to relatively small, simple molecules. Here we integrate comb spectroscopy with continuous, cold samples of molecules produced via buffer gas cooling, thus enabling the study of significantly more complex molecules. We report simultaneous gains in resolution, sensitivity, and bandwidth and demonstrate this combined capability with the first rotationally resolved direct absorption spectra in the CH stretch region of several complex molecules. These include nitromethane (CH$_3$NO$_2$), a model system that presents challenging questions to the understanding of large amplitude vibrational motion, as well as several large organic molecules with fundamental spectroscopic and astrochemical relevance, including naphthalene (C$_{10}$H$_8$), adamantane (C$_{10}$H$_{16}$), and hexamethylenetetramine (C$_{6}$N$_4$H$_{12}$). This general spectroscopic tool has the potential to significantly impact the field of molecular spectroscopy, simultaneously improving efficiency, spectral resolution, and specificity by orders of magnitude. This realization could open up new molecular species and new kinetics for precise investigations, including the study of complex molecules, weakly bound clusters, and cold chemistry.
The discovery and characterization of exoplanets around nearby stars is driven by profound scientific questions about the uniqueness of Earth and our Solar System, and the conditions under which life could exist elsewhere in our Galaxy. Doppler spect
This paper reviews the recent results in high-resolution spectroscopy on cold molecules. Laser spectroscopy of cold molecules addresses issues of symmetry violation, like in the search for the electric dipole moment of the electron and the studies on
We perform heterodyne spectroscopy at 1.56 micron with a tunable laser and thermal radiation from the Sun. The laser tuning is calibrated with a frequency comb, providing a simple spectrometer with absolute frequency tracebility and resolving power of 2,000,000
Direct frequency comb spectroscopy of trapped ions is demonstated for the first time. It is shown that the 4s^2S_(1/2)-4p^2P_(3/2) transition in calcium ions can be excited directly with a frequency comb laser that is upconverted to 393 nm. Detection
We apply direct frequency-comb spectroscopy, in combination with precision cw spectroscopy, to measure the ${rm 4s4p} ^3P_1 to {rm 4s5s} ^3S_1$ transition frequency in cold calcium atoms. A 657 nm ultrastable cw laser was used to excite atoms on the