ترغب بنشر مسار تعليمي؟ اضغط هنا

Electroweak corrections to $pp to mu^+mu^-e^+e^- + X$ at the LHC -- a Higgs background study

62   0   0.0 ( 0 )
 نشر من قبل Stefan Dittmaier
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The first complete calculation of the next-to-leading-order electroweak corrections to four-lepton production at the LHC is presented, where all off-shell effects of intermediate Z bosons and photons are taken into account. Focusing on the mixed final state $mu^+mu^-e^+e^-$, we study differential cross sections that are particularly interesting for Higgs-boson analyses. The electroweak corrections are divided into photonic and purely weak corrections. The former exhibit patterns familiar from similar W/Z-boson production processes with very large radiative tails near resonances and kinematical shoulders. The weak corrections are of the generic size of 5% and show interesting variations, in particular a sign change between the regions of resonant Z-pair production and the Higgs signal.

قيم البحث

اقرأ أيضاً

This paper presents a full simulation study of the measurement of the production cross section ($sigma_{mathrm{ZH}}$) of the Higgsstrahlung process $mathrm{e^{+}e^{-}rightarrow ZH}$ and the Higgs boson mass ($M_{mathrm{H}}$) at the International Line ar Collider (ILC), using events in which a Higgs boson recoils against a Z boson decaying into a pair of muons or electrons. The analysis is carried out for three center-of-mass energies $sqrt{s}$ = 250, 350, and 500 GeV, and two beam polarizations $mathrm{e_{L}^{-}e_{R}^{+}}$ and $mathrm{e_{R}^{-}e_{L}^{+}}$, for which the polarizations of $mathrm{e^{-}}$ and $mathrm{e^{+}}$ are $left(Pmathrm{e^{-}},Pmathrm{e^{+}}right)$ =($-$80%, +30%) and (+80%, $-$30%), respectively. Assuming an integrated luminosity of 250 $mathrm{fb^{-1}}$ for each beam polarization at $sqrt{s}$ = 250 GeV, where the best lepton momentum resolution is obtainable, $sigma_{mathrm{ZH}}$ and $M_{mathrm{H}}$ can be determined with a precision of 2.5% and 37 MeV for $mathrm{e_{L}^{-}e_{R}^{+}}$ and 2.9% and 41 MeV for $mathrm{e_{R}^{-}e_{L}^{+}}$, respectively. Regarding a 20 year ILC physics program, the expected precisions for the $mathrm{HZZ}$ coupling and $M_{mathrm{H}}$ are estimated to be 0.4% and 14 MeV, respectively. The event selection is designed to optimize the precisions of $sigma_{mathrm{ZH}}$ and $M_{mathrm{H}}$ while minimizing the bias on the measured $sigma_{mathrm{ZH}}$ due to discrepancy in signal efficiencies among Higgs decay modes. For the first time, model independence has been demonstrated to a sub-percent level for the $sigma_{mathrm{ZH}}$ measurement at each of the three center-of-mass energies. The results presented show the impact of center-of-mass energy and beam polarization on the evaluated precisons and serve as a benchmark for the planning of the ILC run scenario.
We study muon pair production $ e^+ e^- to mu^+ mu^-$ in the noncommutative(NC) extension of the standard model using the Seiberg-Witten maps of this to the second order of the noncommutative parameter $Theta_{mu u}$. Using $mathcal{O}(Theta^2)$ Fey nman rules, we find the $mathcal{O}(Theta^4)$ cross section(with all other lower order contributions simply cancelled) for the pair production. The momentum dependent $mathcal{O}(Theta^2)$ NC interaction significantly modifies the cross section and angular distributions which are different from the commuting standard model. We study the collider signatures of the space-time noncommutativity at the International Linear Collider(ILC) and find that the process $ e^+ e^- to mu^+ mu^-$ can probe the NC scale $Lambda$ in the range $0.8 - 1.0$ TeV for typical ILC energy ranges.
81 - A.I. Ahmadov 2020
In this present paper, we investigate the muon pairs production in the interaction between two quasireal photons in $e^+e^-$ collision. The total and differential cross section of the process $gamma gamma to mu^+mu^-$ at a beam energy of photons from 3 GeV to 40 GeV in the center-of-mass and for different values of muon transverse momentum and the muon rapidity and the muon angle are calculated. We also study the total cross section, as a function of the $e^+ e^-$ center-of-mass energy $sqrt {s}$ in the region 5 GeV $leq sqrt {s} leq$ 209 GeV process of the $e^+ +e^- to e^+ + e^- +mu^+ + mu^-$ by the two-photon mechanism. The obtained our results are in satisfactory agreement with the experimental data.
68 - A.Denner , S.Dittmaier , M.Roth 2006
The calculation of the full electroweak O(alpha) corrections to the charged-current four-fermion production processes e+e- --> nu_tau tau+ mu- anti-nu_mu, u anti-d mu- anti-nu_mu, and u anti-d s anti-c is briefly reviewed. The calculation is performe d using the complex-mass scheme for the gauge-boson resonances. The evaluation of the occurring one-loop tensor integrals, which include 5- and 6-point functions, requires new techniques. The effects of the complete O(alpha) corrections to the total cross section and to the production-angle distribution are discussed and compared to predictions based on the double-pole approximation, revealing that the latter approximation is not sufficient to fully exploit the potential of a future linear collider in an analysis of W-boson pairs at high energies.
172 - A.Denner , S.Dittmaier , M.Roth 2003
We have calculated the complete electroweak O(alpha) radiative corrections to the single Higgs-boson production processes e+ e- --> nu_l anti-nu_l H (l=e,mu,tau) in the electroweak Standard Model. Initial-state radiation beyond O(alpha) is included i n the structure-function approach. The calculation of the corrections is briefly described, and numerical results are presented for the total cross section. In the G_mu scheme, the bulk of the corrections is due to initial-state radiation, which affects the cross section at the level of -7% at high energies and even more in the ZH threshold region. The remaining bosonic and fermionic corrections are at the level of a few per cent. The confusing situation in the literature regarding differing results for the fermionic corrections to this process is clarified.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا