ﻻ يوجد ملخص باللغة العربية
We discuss the effect of a conformally coupled Higgs field on conformal gravity (CG) predictions for the rotation curves of galaxies. The Mannheim-Kazanas (MK) metric is a valid vacuum solution of CGs 4-th order Poisson equation only if the Higgs field has a particular radial profile, S(r)=S_0 a/(r+a), decreasing from S_0 at r=0 with radial scale length a. Since particle rest masses scale with S(r)/S_0, their world lines do not follow time-like geodesics of the MK metric g_ab, as previously assumed, but rather those of the Higgs-frame MK metric Omega^2 g_ab, with the conformal factor Omega(r)=S(r)/S_0. We show that the required stretching of the MK metric exactly cancels the linear potential that has been invoked to fit galaxy rotation curves without dark matter. We also formulate, for spherical structures with a Higgs halo S(r), the CG equations that must be solved for viable astrophysical tests of CG using galaxy and cluster dynamics and lensing.
We show how Conformal Gravity (CG) has to satisfy a fine-tuning condition to describe the rotation curves of disk galaxies without the aid of dark matter. Interpreting CG as a gauge natural theory yields conservation laws and their associated superpo
We propose a new formula to explain circular velocity profiles of spiral galaxies obtained from the Starobinsky model in Palatini formalism. It is based on the assumption that the gravity can be described by two conformally related metrics: one of th
We show that conformal Chern-Simons gravity in three dimensions has various holographic descriptions. They depend on the boundary conditions on the conformal equivalence class and the Weyl factor, even when the former is restricted to asymptotic Anti
We analyze conformal gravity in translationally invariant approximation, where the metric is taken to depend on time but not on spatial coordinates. We find that the field mode which in perturbation theory has a ghostlike kinetic term, turns into a t
Weyl conformal geometry may play a role in early cosmology where effective theory at short distances becomes conformal. Weyl conformal geometry also has a built-in geometric Stueckelberg mechanism: it is broken spontaneously to Riemannian geometry af