ترغب بنشر مسار تعليمي؟ اضغط هنا

Long-rising Type II supernovae from PTF and CCCP

58   0   0.0 ( 0 )
 نشر من قبل Francesco Taddia
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Supernova (SN) 1987A was a peculiar H-rich event with a long-rising (LR) light curve (LC), stemming from a compact blue supergiant star (BSG). Only a few similar events have been presented in the literature. We present new data for a sample of 6 LR Type II SNe (SNe II), 3 of which were discovered and observed by the Palomar Transient Factory (PTF) and 3 observed by the Caltech Core-Collapse Project (CCCP). Our aim is to enlarge the family of LR SNe II, characterizing their properties. Spectra, LCs, and host-galaxies (HG) of these SNe are presented. Comparisons with known SN 1987A-like events are shown, with emphasis on the absolute magnitudes, colors, expansion velocities, and HG metallicities. Bolometric properties are derived from the multiband LC. By modeling the early-time LCs with scaling relations derived from the SuperNova Explosion Code (SNEC) models of MESA progenitor stars, we estimate the progenitor radii of these SNe and other progenitor parameters. We present PTF12kso, a LR SN II with the largest amount of 56Ni mass for this class. PTF09gpn and PTF12kso are found at the lowest HG metallicities for this SN group. The variety of early LC luminosities depends on the wide range of progenitor radii, from a few tens of solar radii (SN 2005ci) up to thousands (SN 2004ek) with intermediate cases between 100 (PTF09gpn) and 300 solar radii (SN 2004em). We confirm that LR SNe II with LC shapes closely resembling that of SN 1987A generally arise from BSGs. However, some of them likely have progenitors with larger radii (~300 solar radii, typical of yellow supergiants) and can thus be regarded as intermediate cases between normal SNe IIP and SN 1987A-like SNe. Some extended red supergiant (RSG) stars such as the progenitor of SN 2004ek can also produce LR SNe II if they synthesized a large amount of 56Ni. Low HG metallicity is confirmed as a characteristic of BSG SNe.



قيم البحث

اقرأ أيضاً

Superluminous supernovae (SLSNe) are the most luminous supernovae in the universe. They are found in extreme star-forming galaxies and are probably connected with the death of massive stars. One hallmark of very massive progenitors would be a tendenc y to explode in very dense, UV-bright, and blue regions. In this paper we investigate the resolved host galaxy properties of two nearby hydrogen-poor SLSNe, PTF~11hrq and PTF~12dam. For both galaxies textit{Hubble Space Telescope} multi-filter images were obtained. Additionally, we performe integral field spectroscopy of the host galaxy of PTF~11hrq using the Very Large Telescope Multi Unit Spectroscopic Explorer (VLT/MUSE), and investigate the line strength, metallicity and kinematics. Neither PTF~11hrq nor PTF~12dam occurred in the bluest part of their host galaxies, although both galaxies have overall blue UV-to-optical colors. The MUSE data reveal a bright starbursting region in the host of PTF~11hrq, although far from the SN location. The SN exploded close to a region with disturbed kinematics, bluer color, stronger [OIII], and lower metallicity. The host galaxy is likely interacting with a companion. PTF~12dam occurred in one of the brightest pixels, in a starbursting galaxy with a complex morphology and a tidal tail, where interaction is also very likely. We speculate that SLSN explosions may originate from stars generated during star-formation episodes triggered by interaction. High resolution imaging and integral field spectroscopy are fundamental for a better understanding of SLSNe explosion sites and how star formation varies across their host galaxies.
We study a sample of 23 Type II Plateau supernovae (SNe II-P), all observed with the same set of instruments. Analysis of their photometric evolution confirms that their typical plateau duration is 100 days with little scatter, showing a tendency to get shorter for more energetic SNe. The rise time from explosion to plateau does not seem to correlate with luminosity. We analyze their spectra, measuring typical ejecta velocities, and confirm that they follow a well behaved power-law decline. We find indications of high-velocity material in the spectra of six of our SNe. We test different dust extinction correction methods by asking the following -- does the uniformity of the sample increase after the application of a given method? A reasonably behaved underlying distribution should become tighter after correction. No method we tested made a significant improvement.
We present a spectroscopic analysis of the H-alpha profiles of hydrogen-rich type II supernovae. A total of 52 type II supernovae having well sampled optical light curves and spectral sequences were analyzed. Concentrating on the H-alpha P-Cygni prof ile we measure its velocity from the FWHM of emission and the ratio of absorption to emission (a/e) at a common epoch at the start of the recombination phase, and search for correlations between these spectral parameters and photometric properties of the V-band light curves. Testing the strength of various correlations we find that a/e appears to be the dominant spectral parameter in terms of describing the diversity in our measured supernova properties. It is found that supernovae with smaller a/e have higher H-alpha velocities, more rapidly declining light curves from maximum, during the plateau and radioactive tail phase, are brighter at maximum light and have shorter optically thick phase durations. We discuss possible explanations of these results in terms of physical properties of type II supernovae, speculating that the most likely parameters which influence the morphologies of H-alpha profiles are the mass and density profile of the hydrogen envelope, together with additional emission components due to circumstellar interaction.
124 - Noam Ganot 2014
The radius and surface composition of an exploding massive star,as well as the explosion energy per unit mass, can be measured using early UV observations of core collapse supernovae (SNe). We present the first results from a simultaneous GALEX/PTF s earch for early UV emission from SNe. Six Type II SNe and one Type II superluminous SN (SLSN-II) are clearly detected in the GALEX NUV data. We compare our detection rate with theoretical estimates based on early, shock-cooling UV light curves calculated from models that fit existing Swift and GALEX observations well, combined with volumetric SN rates. We find that our observations are in good agreement with calculated rates assuming that red supergiants (RSGs) explode with fiducial radii of 500 solar, explosion energies of 10^51 erg, and ejecta masses of 10 solar masses. Exploding blue supergiants and Wolf-Rayet stars are poorly constrained. We describe how such observations can be used to derive the progenitor radius, surface composition and explosion energy per unit mass of such SN events, and we demonstrate why UV observations are critical for such measurements. We use the fiducial RSG parameters to estimate the detection rate of SNe during the shock-cooling phase (<1d after explosion) for several ground-based surveys (PTF, ZTF, and LSST). We show that the proposed wide-field UV explorer ULTRASAT mission, is expected to find >100 SNe per year (~0.5 SN per deg^2), independent of host galaxy extinction, down to an NUV detection limit of 21.5 mag AB. Our pilot GALEX/PTF project thus convincingly demonstrates that a dedicated, systematic SN survey at the NUV band is a compelling method to study how massive stars end their life.
We study a sample of 11 Type II supernovae (SNe) discovered by the OGLE-IV survey. All objects have well sampled I-band light curves, and at least one spectrum. We find that 2 or 3 of the 11 SNe have a declining light curve, and spectra consistent wi th other SNe II-L, while the rest have plateaus that can be as short as 70d, unlike the 100d typically found in nearby galaxies. The OGLE SNe are also brighter, and show that magnitude limited surveys find SNe that are different than usually found in nearby galaxies. We discuss this sample in the context of understanding Type II SNe as a class and their suggested use as standard candles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا