ﻻ يوجد ملخص باللغة العربية
We present H and K band imaging polarimetry for the PDS 66 circumstellar disk obtained during the commissioning of the Gemini Planet Imager (GPI). Polarization images reveal a clear detection of the disk in to the 0.12 inner working angle (IWA) in H band, almost 3 times as close to the star as the previous HST observations with NICMOS and STIS (0.35 effective IWA). The centro-symmetric polarization vectors confirm that the bright inner disk detection is due to circumstellar scattered light. A more diffuse disk extends to a bright outer ring centered at 80 AU. We discuss several physical mechanisms capable of producing the observed ring + gap structure. GPI data confirm enhanced scattering on the East side of the disk which is inferred to be nearer to us. We also detect a lateral asymmetry in the South possibly due to shadowing from material within the inner working angle. This likely corresponds to a temporally variable azimuthal asymmetry observed in HST/STIS coronagraphic imaging.
The Gemini Planet Imager (GPI) is a dedicated facility for directly imaging and spectroscopically characterizing extrasolar planets. It combines a very high-order adaptive optics system, a diffraction-suppressing coronagraph, and an integral field sp
We present the first scattered-light image of the debris disk around HD 131835 in $H$ band using the Gemini Planet Imager. HD 131835 is a $sim$15 Myr old A2IV star at a distance of $sim$120 pc in the Sco-Cen OB association. We detect the disk only in
Using the Gemini Planet Imager (GPI), we have resolved the circumstellar debris disk around HD 111520 at a projected range of ~30-100 AU in both total and polarized $H$-band intensity. The disk is seen edge-on at a position angle of ~165$^{circ}$ alo
We present the first results from the polarimetry mode of the Gemini Planet Imager (GPI), which uses a new integral field polarimetry architecture to provide high contrast linear polarimetry with minimal systematic biases between the orthogonal polar
The Gemini Planet Imager (GPI) is a high performance adaptive optics system being designed and built for the Gemini Observatory. GPI is optimized for high contrast imaging, combining precise and accurate wavefront control, diffraction suppression, an