ﻻ يوجد ملخص باللغة العربية
The investigation of dynamics of the small scale magnetic field on the Sun photosphere is necessary to understand the physical processes occurring in the higher layers of solar atmosphere due to the magnetic coupling between the photosphere and the corona. We present a simulation able to address these phenomena investigating the statistics of magnetic loops reconnections. The simulation is based on N-body model approach and is divided in two computational layers. We simplify the convection problem, interpreting the larger convective scale, mesogranulation, as the result of the collective interaction of convective downflow of granular scale. The N-body advection model is the base to generate a synthetic time series of nanoflares produced by interacting magnetic loops. The reconnection of magnetic field lines is the result of the advection of the magnetic footpoints following the velocity field generated by the interacting downflows. The model gives a quantitative idea of how much energy is expected to be released by the reconfiguration of magnetic loops in the quiet Sun.
Magnetic flux tubes in the solar wind can be twisted as they are transported from the solar surface, where the tubes are twisted owing to photospheric motions. It is suggested that the twisted magnetic tubes can be detected as the variation of total
Photospheric granulation may excite transverse kink pulses in anchored vertical magnetic flux tubes. The pulses propagate upwards along the tubes with the kink speed, while oscillating wakes are formed behind the wave front in a stratified atmosphere
In this work, a state-of-the-art vortex detection method, Instantaneous Vorticity Deviation, is applied to locate three-dimensional vortex tube boundaries in numerical simulations of solar photospheric magnetoconvection performed by the MURaM code. W
Most 1d hydrodynamic models of plasma confined to magnetic flux tubes assume circular cross-section of these tubes. We use potential field models to show that flux tubes in circumstances relevant to the solar corona do not in general maintain the sam
Solar wind plasma is supposed to be structured in magnetic flux tubes carried from the solar surface. Tangential velocity discontinuity near the boundaries of individual tubes may result in Kelvin-Helmholtz instability, which may contribute into the